EMORY UNIVERSITY DEPARTMENT OF MATHEMATICS & CS Math 211 Multivariable Calculus Spring 2010

Problem Set # 1 (due Friday 22 Jan 2010)

If S is a set of elements, then $s \in S$ means "s is an element of the set S." If T is another set, then $T \subset S$ means "every element of T is an element of S" or "T is a subset of S."

Recall that a multivariable mapping $f : \mathbb{R}^n \to \mathbb{R}^m$ is a recipe, which given any element $v \in \mathbb{R}^n$, produces an element $f(v) \in \mathbb{R}^m$. For certain cases of n and m such mappings have other names:

- n = 1 and m = 1, called single variable function,
- n = 1 and m > 1, called parametrized curve (in \mathbb{R}^m),
- n > 1 and m > 1, called vector field,
- $n \ge 1$ and m = 1, called function (on \mathbb{R}^n).

More generally, given subsets $V \subset \mathbb{R}^n$ and $W \subset \mathbb{R}^m$, a (multivariable) mapping $f: V \to W$ is a recipe, which given any element $v \in V$ produces an element $f(v) \in W$. We call V the *domain* and W the *codomain* of f. The *image* im $(f) \subset W$ of f is the subset of the codomain consisting of all elements $w \in W$ such that w = f(v) for some $v \in V$ in the domain.

Definition. Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be a multivariable mapping, then the graph of f is the multivariable mapping $\Gamma_f : \mathbb{R}^n \to \mathbb{R}^{n+m}$ defined by $\Gamma_f(v) = (v, f(v)) \in \mathbb{R}^n \times \mathbb{R}^m = \mathbb{R}^{n+m}$, i.e. writing $v = (x_1, \ldots, x_n) \in \mathbb{R}^n$ and $f(v) = (f_1(v), \ldots, f_m(v)) \in \mathbb{R}^m$, then $\Gamma_f(x_1, \ldots, x_n) = (x_1, \ldots, x_n, f_1(v), \ldots, f_m(v))$.

- 1. Graphs of Multivariable Functions
 - a) Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a function on \mathbb{R}^2 and let $\Gamma_f : \mathbb{R}^2 \to \mathbb{R}^3$ be its graph. Give \mathbb{R}^3 the standard (x, y, z) coordinates. State an analogy of the "vertical line test" for images $\operatorname{im}(\Gamma_f)$ of graphs of functions f on \mathbb{R}^2 .
 - b) Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a function on \mathbb{R}^2 . Give \mathbb{R}^3 the standard (x, y, z) coordinates. Describe the intersection, in the *x-y*-plane, of $\operatorname{im}(\Gamma_f)$ with the *x-y*-plane, in terms of the function f. What other names have we given this set?
 - c) Now let $f(x, y) = x^2 + y$. Draw, in the *x*-*z*-plane (where *x* is horizontal), the intersection of $\operatorname{im}(\Gamma_f)$ with the *x*-*z*-plane. Find a function $g : \mathbb{R} \to \mathbb{R}$ so that $\operatorname{im}(\Gamma_g)$, thought of in the *x*-*z*-plane, is this intersection.
 - d) Again, let $f(x, y) = x^2 + y$. For each $\theta \in [0, \pi]$, let P_{θ} be the plane through the z-axis and the point $(\cos \theta, \sin \theta, 0)$. Describe, in the plane P_{θ} what the intersection of P_{θ} and $\operatorname{im}(\Gamma_f)$ can look like for varying θ . Orienting the plane P_{θ} with the z-axis vertically, find a function $g_{\theta} : \mathbb{R} \to \mathbb{R}$ whose graph is this intersection.
- 2. CM Problem 12.1.29
- **3.** CM Problems 12.2.15 and 12.2.24
- 4. CM Exercise 12.3.14 and Problem 12.3.33
- **5.** CM Problem 12.5.30
- 6. CM Problem 13.1.33
- 7. CM Problems 13.3.37, 13.3.39, and 13.3.40
- 8. CM Problems 13.4.25 and 13.4.28

EMORY UNIVERSITY, DEPARTMENT OF MATHEMATICS & CS, 400 DOWMAN DR NE W401, ATLANTA, GA 30322 E-mail address: auel@mathcs.emory.edu