Emory University Department of Mathematics \& CS

Math 211 Multivariable Calculus

Spring 2010
Problem Set \# 1 (due Friday 22 Jan 2010)
If S is a set of elements, then $s \in S$ means " s is an element of the set S." If T is another set, then $T \subset S$ means "every element of T is an element of S " or " T is a subset of S."

Recall that a multivariable mapping $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a recipe, which given any element $v \in \mathbb{R}^{n}$, produces an element $f(v) \in \mathbb{R}^{m}$. For certain cases of n and m such mappings have other names:

- $n=1$ and $m=1$, called single variable function,
- $n=1$ and $m>1$, called parametrized curve (in \mathbb{R}^{m}),
- $n>1$ and $m>1$, called vector field,
- $n \geq 1$ and $m=1$, called function (on \mathbb{R}^{n}).

More generally, given subsets $V \subset \mathbb{R}^{n}$ and $W \subset \mathbb{R}^{m}$, a (multivariable) mapping $f: V \rightarrow W$ is a recipe, which given any element $v \in V$ produces an element $f(v) \in W$. We call V the domain and W the codomain of f. The image $\operatorname{im}(f) \subset W$ of f is the subset of the codomain consisting of all elements $w \in W$ such that $w=f(v)$ for some $v \in V$ in the domain.
Definition. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a multivariable mapping, then the graph of f is the multivariable mapping $\Gamma_{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n+m}$ defined by $\Gamma_{f}(v)=(v, f(v)) \in \mathbb{R}^{n} \times \mathbb{R}^{m}=\mathbb{R}^{n+m}$, i.e. writing $v=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ and $f(v)=\left(f_{1}(v), \ldots, f_{m}(v)\right) \in \mathbb{R}^{m}$, then $\Gamma_{f}\left(x_{1}, \ldots, x_{n}\right)=$ $\left(x_{1}, \ldots, x_{n}, f_{1}(v), \ldots, f_{m}(v)\right)$.

1. Graphs of Multivariable Functions
a) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function on \mathbb{R}^{2} and let $\Gamma_{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be its graph. Give \mathbb{R}^{3} the standard (x, y, z) coordinates. State an analogy of the "vertical line test" for images $\operatorname{im}\left(\Gamma_{f}\right)$ of graphs of functions f on \mathbb{R}^{2}.
b) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function on \mathbb{R}^{2}. Give \mathbb{R}^{3} the standard (x, y, z) coordinates. Describe the intersection, in the x - y-plane, of $\operatorname{im}\left(\Gamma_{f}\right)$ with the x - y-plane, in terms of the function f. What other names have we given this set?
c) Now let $f(x, y)=x^{2}+y$. Draw, in the x - z-plane (where x is horizontal), the intersection of $\operatorname{im}\left(\Gamma_{f}\right)$ with the x - z-plane. Find a function $g: \mathbb{R} \rightarrow \mathbb{R}$ so that $\operatorname{im}\left(\Gamma_{g}\right)$, thought of in the x - z-plane, is this intersection.
d) Again, let $f(x, y)=x^{2}+y$. For each $\theta \in[0, \pi]$, let P_{θ} be the plane through the z-axis and the point $(\cos \theta, \sin \theta, 0)$. Describe, in the plane P_{θ} what the intersection of P_{θ} and $\operatorname{im}\left(\Gamma_{f}\right)$ can look like for varying θ. Orienting the plane P_{θ} with the z-axis vertically, find a function $g_{\theta}: \mathbb{R} \rightarrow \mathbb{R}$ whose graph is this intersection.
2. CM Problem 12.1.29
3. CM Problems 12.2.15 and 12.2.24
4. CM Exercise 12.3.14 and Problem 12.3.33
5. CM Problem 12.5.30
6. CM Problem 13.1.33
7. CM Problems 13.3.37, 13.3.39, and 13.3.40
8. CM Problems 13.4.25 and 13.4.28

Emory University, Department of Mathematics \& CS, 400 Dowman Dr NE W401, Atlanta, GA 30322
E-mail address: auel@mathcs.emory.edu

