Emory University Department of Mathematics \& CS
Math 211 Multivariable Calculus
Spring 2010
(Final) Problem Set \# 10 (due Friday 23 April 2010)
Reading: CM 16.4-7

1. CM 16.7 Exercise 2, 4, 6

Problems 16, 20, 26,
2. CM 16 Review Problems 26, 28, 30, 32, 48,
3. Find the volume of the region in \mathbb{R}^{3} between the surfaces $z=x^{2}+y^{2}$ and $z=\left(x^{2}+y^{2}+1\right) / 2$.
4. EC* Sketch and find the volume of the region between the surfaces $x^{2}+y^{2}=4 z$ and $x^{2}+y^{2}+z^{2}=5$.
5. EC* Define

$$
R_{1}=\{(\rho, \theta, \phi): 0 \leq \theta \leq 2 \pi, 0 \leq \phi \leq \pi / 2,0 \leq \rho \leq \cos (\phi)\}
$$

and

$$
R_{1}=\{(\rho, \theta, \phi): 0 \leq \theta \leq 2 \pi, 0 \leq \phi \leq \pi / 2,0 \leq \rho \leq \sin (\phi)\}
$$

and let Φ be the spherical coordinate mapping. Sketch $\Phi\left(R_{1}\right)$ and $\Phi\left(R_{2}\right)$ and compute their volumes.
6. EC* Let $T \mathbb{R}^{3}$ be the solid torus (i.e. doughnut) formed by spinning around the z-axis a disk of radius r centered at $(a, 0,0)$ in the x - z-plane. Of course, assume $0<r<a$ otherwise you don't get a torus. Compute the volume of T. Hint: try cylindrical coordinates.
7. EC* Prove the inflation principle: if a region $R \subset \mathbb{R}^{3}$ has volume V, then for $a>0$ the region $a R$ of all points of R scalar multiplied by a, has volume $a^{3} V$. Hint: use the change of coordinates theorem.

