Emory University Department of Mathematics \& CS

Math 211 Multivariable Calculus

Spring 2010
Problem Set \# 4 (due Wednesday 24 February 2010)
Recall: If $\gamma: \mathbb{R} \rightarrow \mathbb{R}^{2}$ is a parameterized curve in the x - y-plane given by $\gamma(t)\left(\gamma_{1}(t), \gamma_{2}(t)\right)$, and $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a function, then the lift of γ to the graph of f is a new parameterized curve $\alpha: \mathbb{R} \rightarrow \mathbb{R}^{3}$ in 3 -space defined by $\alpha(t)=\left(\gamma_{1}(t), \gamma_{2}(t), f\left(\gamma_{1}(t), \gamma_{2}(t)\right)\right)$.

In CM 17.2, there's a formula for the length of a segment of a parameterized curve. If $\beta: \mathbb{R} \rightarrow \mathbb{R}^{n}$ is any parameterized curve in n-space, and if $a \leq b$ are real numbers, then we have:

$$
\text { (length of } \beta \text { from } t=a \text { to } t=b)=\int_{a}^{b}\|\beta(t)\| d t
$$

Since for each $t,\|\beta(t)\|$ is a number, the integral above is just a standard single-variable definite integral.

Reading: CM 17.1-2

1. Let $P \in \mathbb{R}^{3}$ and let \vec{v} be a direction vector at P. Find a parameterization of the line through P in the direction \vec{v} and with constant speed 1.
2. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $f(x, y)=x y$. Let $P=(1,2,2)$.
(1) For each angle θ from 0 to 2π, find a parameterization γ_{θ} for the line starting at $(1,2)$ in the x - y-plane at time $t=0$, and heading out at an angle θ from the horizontal with constant speed 1.
(2) For each θ, let α_{θ} be the lift of your γ_{θ} to the graph of f. Write $\alpha_{\theta}(t)$.
(3) As a function of θ, calculate the length of α_{θ} from $t=0$ to $t=1$. This is the length travelled on the graph of f in one time unit walking at a compass angle θ.
(4) For which θ is the length of this path maximal/minimal?
(5) Find the compass angle you have to start walking in from P to achieve the greatest ascent/descent. Do these compare with the previous part?
3. CM 17.1 Exercises 14, 24, 26.

Problems 44, 48, 68.

Emory University, Department of Mathematics \& CS, 400 Dowman Dr NE W401, Atlanta, GA 30322
E-mail address: auel@mathcs.emory.edu

