Emory University Department of Mathematics \& CS

Math 211 Multivariable Calculus

Spring 2010
Problem Set \# 5 (due Wednesday 3 March 2010)
Recall: Let $a \leq b$ be real numbers, $[a, b] \subset \mathbb{R}$ the closed interval from a to $b, \gamma:[a, b] \rightarrow \mathbb{R}^{2}$ a parameterized curve, and \vec{F} a vector field in \mathbb{R}^{2}, then the line integral of \vec{F} along γ is computed by the definite integral

$$
\int_{\gamma} \vec{F}=\int_{a}^{b} \vec{F}(\gamma(t)) \cdot \gamma^{\prime}(t) d t
$$

In CM, they like to call parameterized curves \vec{r}, so they write

$$
\int_{C} \vec{F} \cdot d \vec{r}
$$

for the line integral of \vec{F} along the curve C which is the image of \vec{r} from $t=a$ to $t=b$. I personally do not prefer this notation.

Reading: CM 17.4, 18.1-2.

1. CM 17.4 Problem 17
2. CM 18.1 Exercises 2, 4, 6, 12, 14

Problem 38
3. CM 18.2 Exercises 12, 16, 20

Problems 30, 34
4. * Define a vector field by

$$
\vec{F}(x, y)= \begin{cases}-\frac{y}{|y|} \overrightarrow{\boldsymbol{\imath}} & \text { if } y \neq 0 \\ 0 & \text { if } y=0\end{cases}
$$

Parameterize the following closed curves and calculate the (circulation) line integral of \vec{F} along them:
a) A circle of radius 1 about the origin (going counter clockwise).
b) A circle of radius 1 about ($0, \frac{1}{2}$) (going counter clockwise).
c) A circle of radius 1 about ($0, \frac{\sqrt{2}}{2}$) (going counter clockwise).
d) A circle of radius 1 about ($0, \frac{\sqrt{3}}{2}$) (going counter clockwise).
e) A circle of radius 1 about $(0,1)$ (going counter clockwise).

Explain in words what is happening.
Emory University, Department of Mathematics \& CS, 400 Dowman Dr NE W401, Atlanta, GA 30322
E-mail address: auel@mathcs.emory.edu

