Math 211 Multivariable Calculus

Spring 2010
Problem Set \# 6 (due Wednesday 17 March 2010)
Recall: Let $a \leq b$ be real numbers, $[a, b] \subset \mathbb{R}$ the closed interval from a to $b, \gamma:[a, b] \rightarrow \mathbb{R}^{2}$ a parameterized curve, and \vec{F} a vector field in \mathbb{R}^{2}, then the line integral of \vec{F} along γ is computed by the definite integral

$$
\int_{\gamma} \vec{F}=\int_{a}^{b} \vec{F}(\gamma(t)) \cdot \gamma^{\prime}(t) d t
$$

If $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a function on \mathbb{R}^{2}, then we can consider the gradient vector field ∇f on \mathbb{R}^{2}. We have the fundamental theorem of calculus for line integrals:

$$
\int_{\gamma} \nabla f=f(\gamma(b))-f(\gamma(a)) .
$$

A vector field \vec{F} is called path-independent or conservative if the line integral along a path between two points does not depend on the particular path chosen. We proved in class that \vec{F} is path-independent if and only if $\vec{F}=\nabla f$ is a gradient vector field for some function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$. We can view this as a test for path-independence.

Here's another test for path-independence of a vector field, called the curl test. First, some notation: a region $R \subset \mathbb{R}^{2}$ is called simply connected if for every closed curve contained in R, the entire area encircled by that curve is also contained in R. Colloquially, this means that R has "no holes." If $\vec{F}(x, y)=F_{1}(x, y) \overrightarrow{\boldsymbol{\imath}}+F_{2}(x, y) \overrightarrow{\boldsymbol{\jmath}}$ is a vector field (with continuous partial derivatives, whatever that means) then the scalar curl of \vec{F} is the function $\left.\frac{\partial F_{2}}{\partial x}\right|_{(x, y)}-\left.\frac{\partial F_{1}}{\partial y}\right|_{(x, y)}$. Finally, the curl test says: for a vector field \vec{F} on a simply connected region, if the scalar curl of \vec{F} is 0 then \vec{F} is path-independent. You can find this in CM 18.4, pp. 954-955.

Reading: CM 18.1-4.

1. CM 18.3 Exercises 2, 10, 12, 14, 16

Problems 21, 22, 34, 36, 40
You cannot use the curl test for these problems.
2. CM 18.4 Exercises $2,6,8,13$
3. * Define a vector field by

$$
\vec{F}(x, y)=\frac{-y}{x^{2}+y^{2}} \overrightarrow{\boldsymbol{\imath}}+\frac{x}{x^{2}+y^{2}} \overrightarrow{\boldsymbol{\jmath}}
$$

a) Parameterize a circle or radius 1 centered at the origin and calculate the (circulation) line integral of \vec{F} along it.
b) For each real number a, parameterize a circle or radius 1 centered at $(a, 0)$ and calculate the (circulation) line integral of \vec{F} along it (write your answer in terms of a). Just set up the integral.
c) What happens when $a=1$? Can you evaluate the line integral? Does your line integral have a meaning? Does your formula have a meaning? Explain.
d) If you evaluate your integral (from part c)) for a general a, show your work and you will get extra extra credit. Otherwise, use a computer to calculate the antiderivative of the integrand, and evaluate the integral by hand. Simplify as much as you can.
$e)$ How does the integral depend on a ? Explain in words what is happening as a increases.
f) Is \vec{F} path-independant on \mathbb{R}^{2} ? Prove that \vec{F} is path-independant on the open right half-plane $\{(x, y) \in \mathbb{R}: x>0\}$ by finding a potential function for \vec{F} on that region. Also find a potential function for \vec{F} on the open upper half-plane $\{(x, y) \in \mathbb{R}: y>0\}$.

