Emory University Department of Mathematics \& CS

Math 211 Multivariable Calculus

Spring 2012
Final (Tue 08 May 2012, 08:30-11:00 am, MSC W301) Study Guide and Practice Exam
Directions: You will have 2 hour and 30 minutes for the final exam. No electronic devices will be allowed. One page ($8.5^{\prime \prime} \times 11^{\prime \prime}$ front and back) of prepared notes will be allowed. You must show your work on all problems.

Topics/chapters to study:

Section I

a) real line \mathbb{R}, Cartesian plane \mathbb{R}^{2}, 3 -space \mathbb{R}^{3}, n-space \mathbb{R}^{n}, points $P=(x, y, z)$ in \mathbb{R}^{3}, displacement vectors $\vec{v}=x \overrightarrow{\boldsymbol{\imath}}+y \overrightarrow{\boldsymbol{\jmath}}+z \overrightarrow{\boldsymbol{k}}$ at a point, displacement vector between points $\overrightarrow{P Q}$, magnitude $\|\vec{v}\|$, dot product $\vec{v} \cdot \vec{w}$ (angle formula), normal vector \vec{n} to a plane, equation of a plane $\vec{n} \cdot \overrightarrow{P X}=0$ with normal \vec{n} through P, cross product $\vec{v} \times \vec{w}$ (angle formula), planes through three points, parameterizing the line that is the intersection of two planes. HW 1-2 info parts, CM 12.1, 13.1-4.
b) Functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ (mostly $n=1,2,3$), graphs Γ_{f} of functions $z=f(x, y)$ or $z=f(x, y, z)$, graphs of common functions (p. 671), contours/level curves $f(x, y)=c$ and level surfaces $f(x, y, z)=c$, intersecting graphs of functions with planes. CM 12.1-12.5.
c) Partial derivatives $\frac{\partial f}{\partial x}$, gradient ∇f and its properties (pointing to direction of greatest ascent, magnitude is the rate of increase), directional derivatives f_{u}, vector pointing toward greatest ascent $\nabla f+\|\nabla f\|^{2} \overrightarrow{\boldsymbol{k}}$, tangent plane to graphs of functions $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ has normal $\vec{n}=\nabla f-\overrightarrow{\boldsymbol{k}}$, tangent plane to level surface of $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ has normal $\vec{n}=\nabla f$. HW 3 info part, CM 14.1-5
d) Parameterized curves $\gamma: \mathbb{R} \rightarrow \mathbb{R}^{n}$ (for $n=2,3$), parameterized lines $\gamma(t)=\vec{P}+t \vec{v}$ for $0 \leq t \leq 1$ through point P in direction \vec{v}, parameterized circles $\gamma(t)=(\cos (t), \sin (t))$ for $0 \leq t \leq 2 \pi$, velocity vector of a parameterized curve $\gamma^{\prime}(t)$, lifting curves in the plane $\gamma(t)=\left(\gamma_{1}(t), \gamma_{2}(t)\right)$ to a graph $z=f(x, y)$, parameterizing the line of steepest ascent/descent and of no ascent/descent. HW 4 info part, CM 17.1-2.

Section II

a) Vector fields \vec{F}, constant vector fields, gradient fields $\vec{F}=\nabla f$, visualizing vector fields, regions of definition, flow curves $\vec{F}(\gamma(t))=\gamma^{\prime}(t)$. HW 5 info part, CM 17.3-4.
b) Line integrals $\int_{\gamma} \vec{F}$, computing line integrals via a parameterization $\int_{a}^{b} \vec{F}(\gamma(t)) \cdot \gamma^{\prime}(t) d t$, line integral is independent of parameterization chosen, Fundamental Theorem of Calculus for Line Integrals $\int_{\gamma} \nabla f=$ $f(Q)-f(P)$ if γ goes from P to Q. HW 5-6 info part, CM 18.1-18.3.
c) Path-independent vector fields, gradient fields are path-independent (by FTC), tests for path-independence (two tests for path-independence: having a potential, zero scalar curl in a simply connected region of definition; two tests for non-path-independence: non-zero integral around a closed curve, non-zero scalar curl), finding potential functions of vector fields (solving differential equations), examples of vector fields (non-zero scalar curl, zero scalar curl but not path-independent, zero scalar curl on non-simply-connected regions that is path-independent). Midterm 2 practice solutions, CM 18.1-4.
d) Multivariable integrals $\int_{R} f$, iterated integrals/order of integration, double/triple integrals, Fubini's theorem on integration over boxes (can switch the order of iterated integration over boxes), calculating area and volume $\int_{R} 1$ (double, triple integrals), calculating volume under the graph of a 2 -variable function $\int_{R} f$, integration in Cartesian (permutations of $d x d y$ or $d x d y d z$), polar (permutations of $r d r d \theta$), and cylindrical coordinates (permutations of $r d r d \theta d z$). HW 7-9 info part, CM 16.1-3.

Section III

a) Integration in spherical coordinates (permutations of $\rho^{2} \sin \phi d \rho d \theta d \phi$), general change of variables theorem

$$
\int_{\Phi(R)} f(x, y) d x d y=\int_{R} f(x(s, t), y(s, t))\left|\operatorname{det} J_{(s, t)} \Phi\right| d u d v
$$

jacobian matrix $J \Phi=\left(\frac{\partial(x, y)}{\partial(s, t)}\right)$, linear change of variables and matrices. CM 16.1-16.7.
b) Flux integrals: constant vector field over flat region ("constant vector field • area vector"), general formula for flux integral

$$
\int_{S} \vec{F}=\int_{R}(\vec{F} \circ \varphi) \cdot\left(\frac{\partial \varphi}{\partial s} \times \frac{\partial \varphi}{\partial t}\right)
$$

given a parameterization $\varphi: R \rightarrow \mathbb{R}^{3}$ of a surface S, parameterization of graphs. HW 11 info part, CM 17.5, 19.1-3.
c) Sometimes you can make your life easier by using Green's theorem to solve line integrals. Notes from last day of class, CM 18.4, 20.1-2.

Note: The final exam will consist of three section, each of approximately equal worth. Each section will consist of: one multiple choice/true-false question with up to 4 parts with short explanation, and two computational questions with up to 3 parts each where you will have to show your work. There will also be one additional problem which you can elect to replace any of the other problems.

Practice problems: The following assortment of problems is inspired by what will appear on the final exam, but is not necessarily representative of the length of the midterm exam.

Section I

1. Determine whether the following statements are always true, sometimes true/sometimes false, or always false. You do not need to justify your answer.
a) The surface implicitly defined by $z-y=h(x)$, where $h(x)$ is a function of x, is the graph of some function $f(x, y)$.
b) If $c \neq c^{\prime}$ then the level curves $\{f(x, y)=c\}$ and $\left\{f(x, y)=c^{\prime}\right\}$ never intersect.
c) Given a point $P \in \mathbb{R}^{3}$ and a plane S through P, there is a unique unit normal vector to S at P.
d) Given a point $P \in \mathbb{R}^{3}$, a plane S through P, and two vectors \vec{v} and \vec{w} on S with tail at P, then $\vec{v} \times \vec{w}$ is a normal vector to S at P.
$e)$ Given vectors \vec{v} and \vec{w} at a point $P \in \mathbb{R}^{3}$, then $\vec{v} \times \vec{w}=\vec{w} \times \vec{v}$.
f) There is a function $f(x, y)$ with $\frac{\partial f}{\partial x}=y^{2}$ and $\frac{\partial f}{\partial y}=x^{2}$.
g) Given a function $f(x, y)$ and a point $P \in \mathbb{R}^{2}$, there is a direction \vec{u} at P where the rate of change of f is 0 .
2. Let $P=(1,2,3), Q=(3,5,7)$, and $R=(2,5,3)$. Find an equation for the plane through P, Q, and R. Find a unit normal vector to this plane. Find the angle between $\overrightarrow{P Q}$ and $\overrightarrow{P R}$. Find the area of the triangle with vertices P, Q, and R. Find the shortest distance from R to the line through P and Q.
3. Finding tangent lines/planes.
a) Let $C=\left\{x^{2}-y^{2}=3\right\}$ be a curve in \mathbb{R}^{2} and $P=(2,1)$. Find a normal vector to the curve S at the point P and find both a parameterization of and an equation for the tangent line to S at P.
b) Let $S=\left\{z^{2}-2 x y z=x^{2}+y^{2}\right\}$ be a surface in \mathbb{R}^{3} and $P=(1,2,-1)$. Find a normal vector to the surface S at the point P and find an equation of the tangent plane to S at P. Describe all other points of S whose tangent plane is parallel to the tangent plane your found above.
4. Let $f(x, y)=\frac{x-y}{x^{2}+1}$ and $P=(1,1,0)$. Find a normal vector to the graph of f at P. Find an equation of the tangent plane of the graph of f at P. Find a tangent vector to the graph of f at P pointing in the direction of steepest ascent.

Section II

5. Determine whether the following statements are always true, sometimes true/sometimes false, or always false. You do not need to justify your answer.
a) The curve $\gamma(t)=(3 t+2,-2 t)$ for $0 \leq t \leq 5$ passes through the origin.
b) The parameterization $\gamma(t)=(-\sin (t),-\cos (t))$ for $0 \leq t \leq 2 \pi$ is for a unit circle going counterclockwise.
c) If a parameterized curve γ has constant speed (i.e. $\left\|\gamma^{\prime}(t)\right\|$ is constant) then γ is a straight line.
d) Let $P \in \mathbb{R}^{2}$ and define a vector field by $\vec{F}(X)=\overrightarrow{P X}$ for $X=(x, y) \in \mathbb{R}^{2}$. The line integral of \vec{F} around a closed curve γ depends on whether P is contained inside the region bounded by γ or not.
e) If a vector field \vec{F} has constant scalar curl, then the line integral around any two circles of radius 1 is the same.
6. Compute the following line integrals $\int_{\gamma} \vec{F}$.
a) $\vec{F}(x, y)=6 x \overrightarrow{\boldsymbol{\imath}}+\left(x+y^{2}\right) \overrightarrow{\boldsymbol{\jmath}}$ and γ is the the interval on the y-axis from $(0,3)$ to $(0,5)$.
b) $\vec{F}(x, y)=\left(x^{2}+y\right) \overrightarrow{\boldsymbol{\imath}}+\left(y^{2}+x\right) \overrightarrow{\boldsymbol{\jmath}}$ and γ is along the parabola $y=x^{2}+1$ from $(0,1)$ to (1,2).
c) $\vec{F}(x, y)=(\sin (x)+2 x y) \vec{\imath}+\left(\cos (y)+x^{2}\right) \vec{\jmath}$ and γ is the square with vertices $(0,0),(0,1),(1,0)$, and $(1,1)$ going counterclockwise.
d) $\vec{F}(x, y)=(\sin (x)+x y) \overrightarrow{\boldsymbol{\imath}}+\left(\cos (y)+x^{2}\right) \overrightarrow{\boldsymbol{\jmath}}$ and γ is the square with vertices $(0,0),(0,1),(1,0)$, and $(1,1)$ going counterclockwise. (Using Green's theorem will help here.)
7. For each vector field \vec{F} find (and sketch) the region of definition, determine if the region is simply connected, and determine if \vec{F} is path-independent.
a) $\vec{F}(x, y)=\frac{1}{y} \vec{\imath}-\frac{x+1}{y^{2}} \overrightarrow{\boldsymbol{\jmath}}$
b) $\vec{F}(x, y)=\frac{x}{\sqrt{x^{2}+y^{2}-1}} \overrightarrow{\boldsymbol{\imath}}+\frac{y}{\sqrt{x^{2}+y^{2}-1}} \overrightarrow{\boldsymbol{\jmath}}$
c) $\vec{F}(x, y)=\frac{y}{\sqrt{x^{2}-1}} \overrightarrow{\boldsymbol{\imath}}+\frac{1}{\sqrt{y^{2}-1}} \overrightarrow{\boldsymbol{\jmath}}$
d) $\vec{F}(x, y)=x^{2} \sqrt{1-y-x^{2}} \vec{\imath}+3 \vec{\jmath}$
8. Change the order of integration of $\int_{0}^{1} \int_{0}^{z^{2}} \int_{y}^{2} f(x, y, z) d x d y d z$ in all the other 5 possible ways.
9. Computing volumes of general solids.
a) Let a, b, c be positive numbers. Find the volume of the region between the coordinate planes and the plane $a x+b y+c z=1$.
b) Find the volume of the solid formed by drilling out a cylindrical hole of radius a through the center of a sphere of radius r. Of course, we assume that $0 \leq a \leq r$.

Section III

10. Determine whether the following statements are always true, sometimes true/sometimes false, or always false. You do not need to justify your answer.
a) If f and g are functions on the unit square $R=\{0 \leq x \leq 1,0 \leq y \leq 1\} \subset \mathbb{R}^{2}$, then $\int_{R} f \cdot g=\int_{0}^{1} f \cdot \int_{0}^{1} g$.
b) The iterated integrals $\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} f(x, y, z) d z d y d x$ and $\int_{0}^{1} \int_{0}^{1-z} \int_{0}^{1-y-z} f(x, y, z) d x d y d z$ are equal.
c) If $\int_{0}^{1} \int_{0}^{2} f(x, y) d x d y=1$ then $\int_{0}^{2} \int_{0}^{2} f(x, 2 y) d x d y=2$.
d) A double integral can calculate the volume of a three dimensional solid region.
e) The flux of the constant vector field $\overrightarrow{\boldsymbol{k}}$ through a cube (oriented outward) sitting on the x - y-plane is always zero.
f) The flux of the constant vector field $\overrightarrow{\boldsymbol{k}}$ through a sphere with center at the origin is always zero.
11. Let R_{a} be the upper hemisphere of the solid sphere of radius $a>0$ (some positive constant) centered at the origin. Calculate the integral $\int_{R_{a}} z d x d y d z$. Hint: use spherical coordinates. (A side note for physics people: multiplied by $\frac{3}{2 \pi a^{3}}$ (the reciprocal of the volume of R_{a}) this is the z-component of the center of mass of the solid R_{a} with constant density. By symmetry, you know that the x - and y-components are 0 .)
12. Let R be the polyhedral region with vertices $(0,0),(2,5),(1,2)$, and (3,7). Find a change of variables $x=x(s, t)$ and $y=y(s, t)$ so that this polyhedral region becomes a square. Calculate $\int_{R} x y^{2} d x d y$.
13. Let S be the region contained in the closed curve $x^{2}-x y+y^{2}=1$. It's a tilted ellipse. Compute $\int_{S} x y d x d y$ by using the change of coordinates $x=s-\frac{1}{\sqrt{3}} t, y=s+\frac{1}{\sqrt{3}} t$.
14. Let S be the cyclinder $x^{2}+y^{2}=1$ above the $x-y$-plane of height 4 .
a) Find a parameterization for S, including limits.
b) Calculate the flux integral of $\vec{F}(x, y, z)=x \overrightarrow{\boldsymbol{\imath}}+y \overrightarrow{\boldsymbol{\jmath}}$ along S.
