Emory University Department of Mathematics \& CS

Math 211 Multivariable Calculus
Spring 2012
Final (Tue 08 May 2012, 08:30-11:00 am, MSC 301) Study Guide and Practice Exam

Section I

1. Determine whether the following statements are always true (T), sometimes true/sometimes false (T/F), or always false (F). You do not need to justify your answer.
a) T
b) T
c) F
d) T / F
e) T / F
f) F
g) T
2. Let $P=(1,2,3), Q=(3,5,7)$, and $R=(2,5,3)$.

- A normal vector at P through the plane through P, Q, and R is $\overrightarrow{P Q} \times \overrightarrow{P R}=-12 \overrightarrow{\boldsymbol{\imath}}+4 \overrightarrow{\boldsymbol{\jmath}}+3 \overrightarrow{\boldsymbol{k}}$. So an equation for the plane is $-12 x+4 y+3 z=5$.
- A unit normal vector to this plane: $\frac{12}{13} \overrightarrow{\boldsymbol{\imath}}-\frac{4}{13} \overrightarrow{\boldsymbol{\jmath}}-\frac{3}{13} \overrightarrow{\boldsymbol{k}}$.
- The angle between $\overrightarrow{P Q}$ and $\overrightarrow{P R}: \cos ^{-1}\left(\frac{11}{\sqrt{290}}\right)$.
- The area of the triangle with vertices P, Q, and $R: \frac{13}{2}$.
- The shortest distance from R to the line through P and $Q: \frac{13}{\sqrt{29}}$, hint use the fact that you already know the area of the triangle, this distance is the "height" if the base is along the line from P to Q.

3. Finding tangent planes.
a) Let $S=\left\{x^{2}-y^{2}=3\right\} \subset \mathbb{R}^{2}$ and $P=(2,1)$.

- A normal vector to the curve S at the point $P: 4 \vec{\imath}-2 \overrightarrow{\boldsymbol{\jmath}}$.
- A parameterization of the tangent line to S at P : (A fact about vectors in the plane: the vector $-b \overrightarrow{\boldsymbol{\imath}}+a \overrightarrow{\boldsymbol{\jmath}}$ is perpendicular to the vector $a \overrightarrow{\boldsymbol{\imath}}+b \overrightarrow{\boldsymbol{\jmath}}$.) So $2 \overrightarrow{\boldsymbol{\imath}}+4 \overrightarrow{\boldsymbol{\jmath}}$ is a vector perpendicular to $4 \overrightarrow{\boldsymbol{\imath}}-2 \overrightarrow{\boldsymbol{\jmath}}$, so $2 \overrightarrow{\boldsymbol{\imath}}+4 \overrightarrow{\boldsymbol{\jmath}}$ is tangent to the curve at (2,1), then we can parameterize the tangent line as $\gamma(t)=(2+2 t, 1+4 t)$.
b) Let $S=\left\{z^{2}-2 x y z=x^{2}+y^{2}\right\}$ and $P=(1,2,-1)$.
- A normal vector to the surface S at the point $P: 2 \overrightarrow{\boldsymbol{\imath}}-2 \overrightarrow{\boldsymbol{\jmath}}-6 \overrightarrow{\boldsymbol{k}}$.
- An equation of the tangent plane to S at $P: 2 x-2 y-6 z=4$.

4. Let $f(x, y)=\frac{x-y}{x^{2}+1}$ and $P=(1,1,0)$.

- A normal vector to the graph of f at $P: \frac{1}{2} \overrightarrow{\boldsymbol{\imath}}-\frac{1}{2} \overrightarrow{\boldsymbol{\jmath}}-\overrightarrow{\boldsymbol{k}}$.
- An equation of the tangent plane of the graph of f at $P: x-y-2 z=0$.
- A tangent vector to the graph of f at P pointing in the direction of steepest ascent: $\frac{1}{2} \overrightarrow{\boldsymbol{\imath}}-\frac{1}{2} \overrightarrow{\boldsymbol{\jmath}}+\frac{1}{2} \overrightarrow{\boldsymbol{k}}$.

Section II

5. Determine whether the following statements are always true, sometimes true/sometimes false, or always false. You do not need to justify your answer.
a) F
b) F
c) T / F
d) F
e) T / F
6. Compute the following line integrals $\int_{\gamma} \vec{F}$.
a) $\frac{98}{3}$
b) $\frac{14}{3}$
c) 0
d) $\frac{1}{2}$
7. For each vector field \vec{F} find (and sketch) the region of definition, determine if the region is simply connected, and determine if \vec{F} is path-independent.
a) Region: $y \neq 0$, i.e. off the x-axis, is simply connected. Path-independent by scalar curl test.
b) Region: $x^{2}+y^{2}>1$, i.e. off the disk of radius 1 centered at the origin, not simply connected. Pathindependent, this fails all tests, you need to search for the potential function directly!
c) $x^{2}>1$ and $y^{2}>1$, i.e. $|x|>1$ and $|y|>1$, i.e. off the square of side length 2 centered at the origin, not simply connected. Not path-independent by scalar curl test.
d) $y \leq 1-x^{2}$, i.e. underneath a downward facing parabola, simply connected. Not path-independent by scalar curl test.
8. Change the order of integration of $\int_{z=0}^{1} \int_{y=0}^{z^{2}} \int_{x=y}^{2} f(x, y, z) d x d y d z$ in all the other 5 possible ways. You have to draw 5 pictures! You change two adjacent integrals at a time, pretending that the other one is invisible, and working the the appropriate plane.

- Changing the y and z integrals means drawing a picture in the y-z-plane of the limits on the y and z integrals, pretending that the x integral isn't there. Doing this we get

$$
\int_{y=0}^{1} \int_{z=\sqrt{y}}^{1} \int_{x=y}^{2} f(x, y, z) d x d z d y
$$

- From here, changing x and z, we see that the limits of both the x and z integrals only depend on constants and y, which because it is a constant at this point (but to be integrated at the end, to be sure), the limits are just constant with respect to x and y, so we're integrating over a "box." By Fubini's theorem,

$$
\int_{y=0}^{1} \int_{x=y}^{2} \int_{z=\sqrt{y}}^{1} f(x, y, z) d z d x d y .
$$

- From here, changing x and y, we see that we have to break the region into two pieces

$$
\int_{x=0}^{1} \int_{y=0}^{x} \int_{z=\sqrt{y}}^{1} f(x, y, z) d z d y d x+\int_{x=1}^{2} \int_{y=0}^{1} \int_{z=\sqrt{y}}^{1} f(x, y, z) d z d y d x
$$

- Now going back to the original integral and changing the x and y integrals, we see that for fixed z between 0 and 1 , the picture of $0 \leq y \leq z^{2}, y \leq x \leq 2$ has two pieces when x is independent. So changing x and y breaks the integral into two pieces

$$
\int_{z=0}^{1} \int_{x=0}^{z^{2}} \int_{y=0}^{x} f(x, y, z) d y d x d z+\int_{z=0}^{1} \int_{x=z^{2}}^{2} \int_{y=0}^{z^{2}} f(x, y, z) d y d x d z
$$

- Finally, only the " $d y d z d x$ " integral remains, which we get from changing the x and z integrals from above. For each integral, remembering that z is a constant with respect to the x and y integrals, draw a picture: the first is the triangle and the second is a square. Changing finally gives:

$$
\int_{z=0}^{1} \int_{y=0}^{z^{2}} \int_{x=y}^{z^{2}} f(x, y, z) d x d y d z+\int_{z=0}^{1} \int_{y=0}^{z^{2}} \int_{x=z^{2}}^{2} f(x, y, z) d x d y d z
$$

9. Computing volumes of general solids.
a) Let a, b, c be positive numbers. Find the volume of the region between the coordinate planes and the plane $a x+b y+c z=1$.

Here's one method: find above what part of the $x-y$-plane does the given plane lay then integrate $z=\frac{1}{c}(1-a x-b y)$. Note that if any of a, b, or c is zero, then this plane is parallel to one axis, so the volume in question is infinite. This region in the x - y-plane is bounded by the x-axis, the y-axis, and where the plane intersects the $x-y$-plane, i.e. by setting $z=0$, this gives $a x+b y=1$. This line in the x - y-plane intersects the x-axis at $x=\frac{1}{a}$, so the region on the x-axis can be given by $0 \leq x \leq \frac{1}{a}$, $0 \leq y \leq \frac{1}{b}(1-a x)$. Finally the integral is

$$
\int_{x=0}^{\frac{1}{a}} \int_{y=0}^{\frac{1}{b}(1-a x)} \frac{1}{c}(1-a x-b y) d y d x=\frac{1}{6 a b c}
$$

b) Find the volume of the solid formed by drilling out a cylindrical hole of radius a through the center of a sphere of radius R. Of course, we assume that $0 \leq a \leq R$.

We'll use cylindrical coordinates and put the sphere with center at the origin and hole being drilled out along the z-axis. The radius r can go from the radius of the cylinder a to the radius of the sphere R while the height z goes from the bottom of the sphere to the top. This gets set up as:

$$
\int_{\theta=0}^{2 \pi} \int_{r=a}^{R} \int_{z=-\sqrt{R^{2}-r^{2}}}^{-\sqrt{R^{2}-r^{2}}} r d r d z d \theta=\frac{4 \pi}{3}\left(R^{2}-a^{2}\right)^{3 / 2}
$$

Or in the other direction, the radius R forms a right triangle with the height of the shape (from the $x-y$-axis) as one side and the hole radius a as one side, so this height is $\sqrt{R^{2}-a^{2}}$. Then the integral that needs to be set up is:

$$
\int_{\theta=0}^{2 \pi} \int_{z=-\sqrt{R^{2}-a^{2}}}^{\sqrt{R^{2}-a^{2}}} \int_{r=a}^{\sqrt{R^{2}-z^{2}}} r d r d z d \theta=\frac{4 \pi}{3}\left(R^{2}-a^{2}\right)^{3 / 2}
$$

Do which ever you like better!

Section III

10. Determine whether the following statements are always true, sometimes true/sometimes false, or always false. You do not need to justify your answer.
a) T/F. If f is purely a function of x and g is purely a function of y, then this statement is true. If both f and g depend on both x and y, then this statement need not be true.
b) T. Both integrals represent the integral of f over the region below the plane $x+y+z=1$ and above the $x-y$-axis.
c) T / F. This is true for the function $f(x, y)=1 / 2$, but in general, using the change of variables theorem with $x=u, y=2 v$, we see that the box $0 \leq u \leq 2,0 \leq v \leq 1$ in the u - v-plane is mapped to the box $0 \leq x \leq 2,0 \leq y \leq 2$ in the x - y-plane. You should check that the change of variables theorem does not take one integrand to the other under this mapping! So probably it isn't true in general. Check with a simple example: $\int_{0}^{1} \int_{0}^{2} y d x d y=1$ yet $\int_{0}^{2} \int_{0}^{2} 2 y d x d y=4 \neq 2$.
d) T. For example, if R is a region in the $x-y$-plane, and $f(x, y)$ is a nonnegative function, then $\int_{R} f$ is the volume of the region below the graph of f and above R.
e) T. The flux of each face will cancel with the flux of the opposite face.
f) T. You can use the divergence theorem.
11. Let R_{a} be the upper hemisphere of the solid sphere of some radius $a>0$ centered at the origin. In spherical coordinates, we have

$$
\begin{aligned}
\int_{R_{a}} z d x d y d z & =\int_{\theta=0}^{2 \pi} \int_{\phi=0}^{\pi / 4} \int_{\rho=0}^{a} \rho \cos (\phi) \rho^{2} \sin (\phi) d \rho d \phi d \theta \\
& =2 \pi \int_{\phi=0}^{\pi / 4} \frac{a^{4}}{4} \cos (\phi) \sin (\phi) d \phi=\left.\frac{\pi a^{4}}{2} \frac{1}{2} \sin ^{2}(\phi)\right|_{\phi=0} ^{\pi / 4}=\frac{\pi a^{4}}{4}
\end{aligned}
$$

Side note for physics people: this says that the z-coordinate of the center of mass of R_{a} (thought of with constant density) is $\frac{3}{2 \pi a^{3}} \frac{\pi a^{4}}{4}$. So the center of mass is at the point $\left(0,0, \frac{3 a}{8}\right)$. Makes sense!
12. Let R be the polyhedral region with vertices $(0,0),(2,5),(1,2)$, and (3,7). To calculate $\int_{R} x y^{2} d x d y$, we use the change of coordinates $\Phi(s, t)=\left(\begin{array}{c}1 \\ 2 \\ 2\end{array}\right)\binom{s}{t}=(s+2 t, 2 s+5 t)=(x(s, t), y(s, t))$. So this makes $x(s, t)=s+2 t$ and $y(s, t)=2 s+5 t$. This transforms the unit square into R. So now you're integrating the function $(s+2 t)(2 s+5 t)^{2}$ over the unit square in the $s-t$-plane. You can calculate this integral, which turns out to be 29 .
13. Let S be the region contained in the closed curve $x^{2}-x y+y^{2}=1$. Compute $\int_{S} x y d x d y$ by using the change of coordinates $x=s-\frac{1}{\sqrt{3}} t, y=s+\frac{1}{\sqrt{3}} t$. Notice that substituting in the change of variables yields:

$$
1=\left(s-\frac{1}{\sqrt{3}} t\right)^{2}-\left(s-\frac{1}{\sqrt{3}} t\right)\left(s+\frac{1}{\sqrt{3}} t\right)+\left(s+\frac{1}{\sqrt{3}} t\right)^{2}=s^{2}+t^{2}
$$

so that the unit disk R in the s - t-plane maps under $\Phi(s, t)=\left(s-\frac{1}{\sqrt{3}} t, s+\frac{1}{\sqrt{3}} t\right)$ to the region S in the $x-y$-plane. Now to compute the jacobian matrix and its determinant

$$
J_{(s, t)} \Phi=\left(\begin{array}{cc}
\frac{\partial x}{\partial s} & \frac{\partial x}{\partial t} \\
\frac{\partial y}{\partial s} & \frac{\partial y}{\partial t}
\end{array}\right)=\left(\begin{array}{cc}
1 & -\frac{1}{\sqrt{3}} \\
1 & \frac{1}{\sqrt{3}}
\end{array}\right), \quad \operatorname{det} J_{(s, t)} \Phi=\frac{2}{\sqrt{3}} .
$$

Finally, the integral is, using the change of variables theorem:

$$
\int_{\Phi(R)} x y d x d y=\int_{R}\left(s-\frac{1}{\sqrt{3}} t\right)\left(s+\frac{1}{\sqrt{3}} t\right) \frac{2}{\sqrt{3}} d s d t=\frac{2}{\sqrt{3}} \int_{R}\left(s^{2}-\frac{1}{3} t^{2}\right) d s d t=\frac{\pi}{3 \sqrt{3}}
$$

by integrating over the unit circle (at this point you probably want to switch to polar coordinates)!
14. Let S be the surface given by the cyclinder $x^{2}+y^{2}=1$ above the x - y-plane of height 4 .
a) A parameterization for S, including limits: $\varphi(t, s)=(\cos (t), \sin (t), s)$ where $0 \leq t \leq 2 \pi$ and $0 \leq s \leq 4$. (See CM chapter 17.5 for more information on parameterizing surfaces!)
b) First, we can calculate $\frac{\partial \varphi}{\partial s}$ and $\frac{\partial \varphi}{\partial t}$:

$$
\begin{aligned}
& \frac{\partial \varphi}{\partial s}=\frac{\partial \varphi_{1}}{\partial s} \overrightarrow{\boldsymbol{\imath}}+\frac{\partial \varphi_{2}}{\partial s} \overrightarrow{\boldsymbol{\jmath}}+\frac{\partial \varphi_{3}}{\partial s} \overrightarrow{\boldsymbol{k}}=\overrightarrow{\boldsymbol{k}} \\
& \frac{\partial \varphi}{\partial t}=\frac{\partial \varphi_{1}}{\partial t} \overrightarrow{\boldsymbol{\imath}}+\frac{\partial \varphi_{2}}{\partial t} \overrightarrow{\boldsymbol{\jmath}}+\frac{\partial \varphi_{3}}{\partial t} \overrightarrow{\boldsymbol{k}}=-\sin (t) \overrightarrow{\boldsymbol{\imath}}+\cos (t) \overrightarrow{\boldsymbol{\jmath}}
\end{aligned}
$$

Then we have

$$
\frac{\partial \varphi}{\partial s} \times \frac{\partial \varphi}{\partial t}=\cos (t) \overrightarrow{\boldsymbol{\imath}}+\sin (t) \overrightarrow{\boldsymbol{\jmath}}
$$

Then the flux integral of $\vec{F}(x, y, z)=x \overrightarrow{\boldsymbol{\imath}}+y \overrightarrow{\boldsymbol{\jmath}}$ along S is

$$
\begin{aligned}
\int_{S} \vec{F} & =\int_{t=0}^{2 \pi} \int_{s=0}^{4} \vec{F}(\cos (t), \sin (t), s) \cdot\left(\frac{\partial \varphi}{\partial s} \times \frac{\partial \varphi}{\partial t}\right) d s d t \\
& =\int_{t=0}^{2 \pi} \int_{s=0}^{4}(\cos (t) \overrightarrow{\boldsymbol{\imath}}+\sin (t) \overrightarrow{\boldsymbol{\jmath}}) \cdot(\cos (t) \overrightarrow{\boldsymbol{\imath}}+\sin (t) \overrightarrow{\boldsymbol{\jmath}}) d s d t \\
& =\int_{t=0}^{2 \pi} \int_{s=0}^{4} d s d t=8 \pi .
\end{aligned}
$$

