Emory University Department of Mathematics \& CS
Math 211 Multivariable Calculus
Spring 2012
Final Problem Set \# 11 (due Tuesday May 01 2012)

1. CM 16.7 Exercise 2, 4, 6

Problems 16, 17, 20 (afterward switch to polar coordinates), 21, 26
2. (Extra Credit) Let R_{α} be the region bounded by two cylinders of radius 1 whose axes intersect with an angle α between them. Assume $0<\alpha \leq \pi / 2$. Feel free to orient one of the cylinders in a convenient position (like along the z-axis, or perhaps along the y-axis, for example). Find the volume of R_{α} as a function of α. You already know from class that the volume of $R_{\pi / 2}$ is $16 / 3$. You may find that making a change of coordinates will help you! What happens to the volume of R_{α} as $\alpha \rightarrow 0$?

Reading: CM 17.5, 19.1-3

3. CM 19.1 Exercises 6, 10, 32

4. CM 19.3 Exercise 2, 3

Parameterized surfaces and flux. Let R be a region in \mathbb{R}^{2}, in which we use the coordinates (s, t). A parameterized surface in \mathbb{R}^{3} is a mapping $\varphi: R \rightarrow \mathbb{R}^{3}$. The image S of φ is a surface in \mathbb{R}^{3}.

In analogy with the velocity vector of a parameterized curve, a parameterized surface $\varphi: R \rightarrow \mathbb{R}^{3}$ has two different partial derivative vectors. Expanding out into coordinate functions $\varphi(s, t)=\left(\varphi_{1}(s, t), \varphi_{2}(s, t), \varphi_{3}(s, t)\right)$, then define

$$
\frac{\partial \varphi}{\partial s}=\frac{\partial \varphi_{1}}{\partial s} \overrightarrow{\boldsymbol{\imath}}+\frac{\partial \varphi_{2}}{\partial s} \overrightarrow{\boldsymbol{\jmath}}+\frac{\partial \varphi_{3}}{\partial s} \overrightarrow{\boldsymbol{k}}, \quad \frac{\partial \varphi}{\partial t}=\frac{\partial \varphi_{1}}{\partial t} \overrightarrow{\boldsymbol{\imath}}+\frac{\partial \varphi_{2}}{\partial t} \overrightarrow{\boldsymbol{\jmath}}+\frac{\partial \varphi_{3}}{\partial t} \overrightarrow{\boldsymbol{k}} .
$$

Then $\frac{\partial \varphi}{\partial s}$ and $\frac{\partial \varphi}{\partial t}$ are always tangent vectors to the surface. Their cross product $\frac{\partial \varphi}{\partial s} \times \frac{\partial \varphi}{\partial t}$ is then always a normal vector to the surface (or zero in some bad cases).

Let \vec{F} be a vector field on \mathbb{R}^{3}, and S a surface in \mathbb{R}^{3} with parameterization $\varphi: R \rightarrow R^{3}$. Then the flux integral of \vec{F} over S is

$$
\int_{S} \vec{F}=\int_{R}(\vec{F} \circ \varphi) \cdot\left(\frac{\partial \varphi}{\partial s} \times \frac{\partial \varphi}{\partial t}\right) .
$$

You should think of a flux integral as a 2-dimensional version of a line integral.
For example, if $R=\{(s, t): a \leq s \leq b, c \leq t \leq d\}$ is a box, then

$$
\int_{S} \vec{F}=\int_{t=c}^{d} \int_{s=a}^{b} \vec{F}(\varphi(s, t)) \cdot\left(\left.\frac{\partial \varphi}{\partial s}\right|_{(s, t)} \times\left.\frac{\partial \varphi}{\partial t}\right|_{(s, t)}\right) d s d t .
$$

This should remind you of the formula for a line integral given a parameterized curve.

Note that in CM, they write \vec{r} for a parameterized surface (what we're calling φ) and $\int_{S} \vec{F} d \vec{A}$ for the flux integral.

Emory University, Department of Mathematics \& CS, 400 Dowman Dr NE W401, Atlanta, GA 30322

E-mail address: auel@mathcs.emory.edu

