Emory University Department of Mathematics \& CS

Math 211 Multivariable Calculus

Spring 2012
Problem Set \# 4 (due Friday 17 February 2012)
Lift: If $\gamma: \mathbb{R} \rightarrow \mathbb{R}^{2}$ is a parameterized curve in the x - y-plane given by $\gamma(t)=\left(\gamma_{1}(t), \gamma_{2}(t)\right)$, and $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a function, then the lift of γ to the graph of f is a new parameterized curve $\alpha: \mathbb{R} \rightarrow \mathbb{R}^{3}$ in 3 -space defined by $\alpha(t)=\left(\gamma_{1}(t), \gamma_{2}(t), f\left(\gamma_{1}(t), \gamma_{2}(t)\right)\right)$.

Reading: CM 17.1-3

1. Let P be a point in \mathbb{R}^{3} and let \vec{v} be a direction vector at P. Find a parameterization of the line through P in the direction \vec{v} and with constant speed 1. (Hint: Look at the section "Unit vectors" in chapter 13.1 , page 692 .) How many other parameterizations of this line exist with constant speed 1 ?
2. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $f(x, y)=9-2 x-3 y$. Let $P=(1,2,1)$.
a) For each angle θ from 0 to 2π, find a parameterization $\gamma_{\theta}: \mathbb{R} \rightarrow \mathbb{R}^{2}$ for the line starting at (1,2) in the x - y-plane at time $t=0$, and heading out at an angle θ from x-axis with constant speed 1 .

b) For each θ, let α_{θ} be the lift of your γ_{θ} to the graph of f. Write $\alpha_{\theta}(t)$.
c) Consider the parameterized curve $\delta: \mathbb{R} \rightarrow \mathbb{R}^{3}$ (considered with variable θ) defined by the "unit length lifts" $\delta(\theta)=\alpha_{\theta}(1)$. Explain why δ is an ellipse (hint: realize it as the lift to Γ_{f} of the unit circle around $(1,2)$ in the in the $x-y$-plane; also ask yourself "what kind of surface is Γ_{f} ?").
d) At what compass angle (with respect to the x-axis) do you have to start moving in to achieve the greatest instantaneous ascent on the graph at the point ($1,2,1$) (hint: use the gradient).
e) For each θ, calculate the velocity vector $\vec{\alpha}_{\theta}^{\prime}(0)$ (you should get a vector depending on θ).
f) For each θ, calculate the speed $\left\|\vec{\alpha}_{\theta}^{\prime}(0)\right\|$ (this should be a function of θ).
g) (Extra credit) Use your single variable calculus prowess (or a computer!) to find the angle $0 \leq$ $\theta \leq 2 \pi$ giving the maximum value for this speed. Give an exact value and a decimal approximation for this angle.
h) (Extra credit) Compare the angles you got in parts d) and g) (they should differ by about π). Do they differ by exactly π ? Explain what's going on here, perhaps draw a picture to help you explain.
3. CM 17.1 Problems 48, 68.
4. CM 17.2 Problems 28, 29, 35, 37.

Emory University, Department of Mathematics \& CS, 400 Dowman Dr NE W401, Atlanta, GA 30322
E-mail address: auel@mathcs.emory.edu

