EMORY UNIVERSITY DEPARTMENT OF MATHEMATICS & CS Math 211 Multivariable Calculus Spring 2012

Problem Set # 4 (due Friday 17 February 2012)

Lift: If $\gamma : \mathbb{R} \to \mathbb{R}^2$ is a parameterized curve in the *x*-*y*-plane given by $\gamma(t) = (\gamma_1(t), \gamma_2(t))$, and $f : \mathbb{R}^2 \to \mathbb{R}$ is a function, then the *lift* of γ to the graph of f is a new parameterized curve $\alpha : \mathbb{R} \to \mathbb{R}^3$ in 3-space defined by $\alpha(t) = (\gamma_1(t), \gamma_2(t), f(\gamma_1(t), \gamma_2(t)))$.

Reading: CM 17.1-3

1. Let P be a point in \mathbb{R}^3 and let \vec{v} be a direction vector at P. Find a parameterization of the line through P in the direction \vec{v} and with constant speed 1. (Hint: Look at the section "Unit vectors" in chapter 13.1, page 692.) How many other parameterizations of this line exist with constant speed 1?

- **2.** Let $f : \mathbb{R}^2 \to \mathbb{R}$ be defined by f(x, y) = 9 2x 3y. Let P = (1, 2, 1).
 - a) For each angle θ from 0 to 2π , find a parameterization $\gamma_{\theta} : \mathbb{R} \to \mathbb{R}^2$ for the line starting at (1, 2) in the *x*-*y*-plane at time t = 0, and heading out at an angle θ from *x*-axis with constant speed 1.

- b) For each θ , let α_{θ} be the lift of your γ_{θ} to the graph of f. Write $\alpha_{\theta}(t)$.
- c) Consider the parameterized curve $\delta : \mathbb{R} \to \mathbb{R}^3$ (considered with variable θ) defined by the "unit length lifts" $\delta(\theta) = \alpha_{\theta}(1)$. Explain why δ is an ellipse (hint: realize it as the lift to Γ_f of the unit circle around (1,2) in the in the *x-y*-plane; also ask yourself "what kind of surface is Γ_f ?").
- d) At what compass angle (with respect to the x-axis) do you have to start moving in to achieve the greatest instantaneous ascent on the graph at the point (1, 2, 1) (hint: use the gradient).
- e) For each θ , calculate the velocity vector $\vec{\alpha}'_{\theta}(0)$ (you should get a vector depending on θ).
- f) For each θ , calculate the speed $\|\vec{\alpha}_{\theta}'(0)\|$ (this should be a function of θ).
- g) (Extra credit) Use your single variable calculus provess (or a computer!) to find the angle $0 \le \theta \le 2\pi$ giving the maximum value for this speed. Give an exact value and a decimal approximation for this angle.
- h) (Extra credit) Compare the angles you got in parts d) and g) (they should differ by about π). Do they differ by exactly π ? Explain what's going on here, perhaps draw a picture to help you explain.
- **3.** CM 17.1 Problems 48, 68.
- 4. CM 17.2 Problems 28, 29, 35, 37.