Emory University Department of Mathematics \& CS
Math 211 Multivariable Calculus
Spring 2012
Problem Set \# 2 (Fri 03 Feb 2012) Solutions

1. CM 14.2

- Exercise 28

Solution.

$$
\frac{\partial}{\partial x} \ln \left(y e^{x y}\right)=\frac{\frac{\partial}{\partial x} y e^{x y}}{y e^{x y}}=\frac{y^{2} e^{x y}}{y e^{x y}}=y
$$

- Problem 40

Solution. Well, $f(65,160)=\frac{1}{100} \cdot 65^{1 / 4} \cdot 160^{3 / 4} \approx 1.28$, this means that a person weighing $65 \mathrm{~kg}(\approx 143 l b)$ and $160 \mathrm{~cm}\left(\approx 5^{\prime} 3^{\prime \prime}\right)$ has about $1.28 \mathrm{~m}^{2}\left(\approx 13.78 \mathrm{ft}^{2}\right)$ of skin.

Now calculate
$\left.\frac{\partial f}{\partial w}\right|_{(w, h)}=\frac{1}{100} \frac{1}{4} w^{-3 / 4} h^{3 / 4}=\frac{1}{400}\left(\frac{h}{w}\right)^{3 / 4},\left.\quad \frac{\partial f}{\partial h}\right|_{(w, h)}=\frac{1}{100} w^{1 / 4} \frac{3}{4} w^{-1 / 4}=\frac{3}{400}\left(\frac{w}{h}\right)^{1 / 4}$
so that $\left.\frac{\partial f}{\partial w}\right|_{(65,160)} \approx 0.005$ and $\left.\frac{\partial f}{\partial h}\right|_{(65,130)} \approx 0.006$. This means that for every $k g$ of weight, the skin surface area is increased by $0.005 \mathrm{~m}^{2}$ and for every cm of height, the skin surface area is increased by $0.006 \mathrm{~m}^{2}$. Crazy!

2. CM 14.3

- Exercise 2

Solution. $e x-z=0$

- Exercise 4

Solution. $6 y-z=9$

- Exercise 8

Solution. $9 x+80 y+4 z=64$

