Emory University Department of Mathematics \& CS

Math 211 Multivariable Calculus

Spring 2012
Problem Set \# 4 (Fri 17 Feb 2012) Selected Solutions

1. Let P be a point in \mathbb{R}^{3} and let \vec{v} be a direction vector at P. Find a parameterization of the line through P in the direction \vec{v} and with constant speed 1.

Solution. If you just parameterize the line using the standard method (we have a point and a direction vector), then you get

$$
\gamma(t)=P+t \vec{v}
$$

But computing the velocity of this parameterization, you find $\vec{\gamma}^{\prime}(t)=\vec{v}$ for every t. This has speed $\|\vec{v}\|$, which may not be equal to 1 , depending on which \vec{v} you are given. So the real question is: can you find a direction vector pointing in the same direction as \vec{v} (so that the line parameterized with be the same line) but having length 1? Yes. This is in the book on page 692 . Given any nonzero vector \vec{v}, then the vector $\frac{1}{\|\vec{v}\|} \vec{v}$ points in the same direction as \vec{v} (since they are proportional) and has length 1 . Then use that to parameterize.
2. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $f(x, y)=9-2 x-3 y$. Let $P=(1,2,1)$.

Solution.

a) For each angle θ, the direction vector $\cos (\theta) \overrightarrow{\boldsymbol{\imath}}+\sin (\theta) \overrightarrow{\boldsymbol{\jmath}}$ is a unit vector (since $\sin ^{2}+\cos ^{2}=$ 1) pointing in a direction making angle θ with the x-axis. So using this vector at the point $(1,2)$ gives a parameterization

$$
\gamma(t)=(1+\cos (\theta) t, 2+\sin (\theta) t)
$$

of the desired line with constant speed 1.
b) The lift is
$\alpha_{\theta}(t)=(1+\cos (\theta) t, 2+\sin (\theta) t, 9-2(1+\cos (\theta) t)-3(2+\sin (\theta) t))=(1+\cos (\theta) t, 2+\sin (\theta) t, 1-2 \cos (\theta) t-3 \sin (\theta) t)$.
c) First we write down δ :

$$
\delta(\theta)=\alpha_{\theta}(1)=(1+\cos (\theta), 2+\sin (\theta), 1-2 \cos (\theta)-3 \sin (\theta))
$$

and realize that if we parameterize the standard unit circle around $(1,2)$ as

$$
u(\theta)=(1+\cos (\theta), 2+\sin (\theta))
$$

then $\delta(\theta)$ is actually the lift to the graph of f of the parameterized curve u. Now also we should realize that the graph of f has equation $z=f(x, y)=9-2 x-3 y$, and so it's a plane! Can you see why lifting a circle to a plane results in an ellipse?
d) The vector pointing in direction of greatest rate of change of f at $(1,2)$ (i.e. greatest ascent on the graph of f at $(1,2,1)$) is given by the gradient

$$
\left.\nabla f\right|_{(1,2)}=-2 \overrightarrow{\boldsymbol{\imath}}-3 \overrightarrow{\boldsymbol{\jmath}}
$$

To find the angle, we can use the inverse tangent function and draw a little triangle. We find that the angle this vector makes with the x-axis is $\tan (-3 /-2)+\pi$.
e) First calculate the velocity (taking derivatives with respect to t)

$$
\vec{\alpha}_{\theta}^{\prime}(t)=\cos (\theta) \overrightarrow{\boldsymbol{\imath}}+\sin (\theta) \overrightarrow{\boldsymbol{\jmath}}-(2 \cos (\theta)+3 \sin (\theta)) \overrightarrow{\boldsymbol{k}} .
$$

Since this doesn't depend on t any longer, evaluating at $t=0$ gives

$$
\vec{\alpha}_{\theta}^{\prime}(1)=\cos (\theta) \overrightarrow{\boldsymbol{\imath}}+\sin (\theta) \overrightarrow{\boldsymbol{\jmath}}-(2 \cos (\theta)+3 \sin (\theta)) \overrightarrow{\boldsymbol{k}}
$$

f) The speed is

$$
\left\|\vec{\alpha}_{\theta}^{\prime}(t)\right\|=\sqrt{\cos ^{2}(\theta)+\sin ^{2}(\theta)+(2 \cos (\theta)+3 \sin (\theta))^{2}}=\sqrt{1+(2 \cos (\theta)+3 \sin (\theta))^{2}}
$$

3. CM 17.1 Problem 48.

Solution.

a) The line $\gamma(t)=(2+3 t, 5+t, 2 t)$ intersects the plane $x+y+z=1$ when

$$
(2+3 t)+(5+t)+2 t=0
$$

i.e. when $t=-7 / 6$. Then the point of intersection is $\gamma(-7 / 6)=(-3 / 2,23 / 6,-7 / 3)$.
b) By vector, they mean "vector at the point of intersection." Otherwise, it's impossible! So we're looking for a vector that is both in the plane $x+y+z=1$ and also perpendicular to the line $\gamma(t)$ at the point of intersection. But this last condition means exactly that the vector is perpendicular to the direction (which is $3 \overrightarrow{\boldsymbol{\imath}}+\overrightarrow{\boldsymbol{\jmath}}+2 \overrightarrow{\boldsymbol{k}}$) of the line. This means that the vector is in the plane normal to the vector $3 \overrightarrow{\boldsymbol{\imath}}+\overrightarrow{\boldsymbol{\jmath}}+2 \overrightarrow{\boldsymbol{k}}$ through the point of intersection. So we are just looking for a vector on the intersection of two planes which we know how to do. Taking the cross product of the normal vectors of the planes will give you a vector pointing in the direction of the intersection at the point. This cross product is

$$
(3 \vec{\imath}+\overrightarrow{\boldsymbol{\jmath}}+2 \overrightarrow{\boldsymbol{k}}) \times(\overrightarrow{\boldsymbol{\imath}}+\overrightarrow{\boldsymbol{\jmath}}+\overrightarrow{\boldsymbol{k}})=\overrightarrow{\boldsymbol{\imath}}+\overrightarrow{\boldsymbol{\jmath}}-2 \overrightarrow{\boldsymbol{k}} .
$$

So at the point $(-3 / 2,23 / 6,-7 / 3)$, the vector $\overrightarrow{\boldsymbol{\imath}}+\overrightarrow{\boldsymbol{\jmath}}-2 \overrightarrow{\boldsymbol{k}}$ points in the direction of this intersection (i.e. it is on the plane and perpendicular to the line). The endpoint of this vector $(-1 / 2,29 / 6,-13 / 3)$ is then a point on this intersection.
c) Well, you are just now being asked to parameterize the line through the point $(-3 / 2,23 / 6,-7 / 3)$ in the direction $\overrightarrow{\boldsymbol{\imath}}+\overrightarrow{\boldsymbol{\jmath}}-2 \overrightarrow{\boldsymbol{k}}$. Fine.

