Emory University Department of Mathematics \& CS
 Math 211 Multivariable Calculus

Spring 2012
Quiz \# 1 St. Valuentine's Day $\bigcirc 2012$ Solutions
Directions: You had 20 minutes. No electronic devices were allowed. No notes were allowed.

1. Let S be the plane in \mathbb{R}^{3} defined by the equation $2 x+3 y+4 z=4$.
a) Find a point on S.

Solution. I spotted the point $(x, y, z)=(0,0,1)$. More generally, solving for z in terms of x and y gives $z=\frac{1}{4}(4-2 x-3 y)$, so that for any choices of x and y, the point $\left(x, y, \frac{1}{4}(4-2 x-3 y)\right)$ is on S.
b) Find a vector normal to S at your point.

Solution. As discussed in class, the vector $2 \overrightarrow{\boldsymbol{\imath}}+3 \overrightarrow{\boldsymbol{\jmath}}+4 \overrightarrow{\boldsymbol{k}}$ (taking the coefficients of x, y, and z) will be normal to S at any point of S.
c) Find an equation for the plane parallel to S but passing through the origin.

Solution. Using the normal, call it \vec{n}, from part b) and the origin as the point, the equation $\vec{n} \cdot \vec{X}=2 x+3 y+4 z=\vec{n} \cdot \overrightarrow{0}=0$ gives an example (since any vector dotted with the the zero vector is zero). In fact any plane written as $a x+b y+c z=e$ goes through the origin if and only if $e=0$.
2. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $f(x, y)=(x+1) e^{x y+2 x}$ and let Γ_{f} in \mathbb{R}^{3} be the graph of f.
a) Calculate the gradient vector $\left.\nabla f\right|_{(0,0)}$.

Solution. First, we compute

$$
\nabla f=\left(e^{x y+2 x}+(x+1)(y+2) e^{x y+2 x}\right) \overrightarrow{\boldsymbol{\imath}}+(x+1) x e^{x y+2 x} \overrightarrow{\boldsymbol{\jmath}}
$$

by using the product rule, chain rule, and exponentiation rules for derivatives. Then evaluating gives $\left.\nabla f\right|_{(0,0)}=\left(e^{0}+1 \cdot 2 \cdot e^{0}\right) \overrightarrow{\boldsymbol{\imath}}+1 \cdot 0 \cdot e^{0}=3 \overrightarrow{\boldsymbol{u}}$.
b) Find z such that the point $P=(0,0, z)$ is on Γ_{f}.

Solution. The graph has implicit equation $z=f(x, y)$, for $(x, y)=(0,0)$, we have that $z=$ $f(0,0)=1$. So $P=(0,0,1)$.
c) Find an equation for the tangent plane to Γ_{f} at the point P from part b). Write your equation in the form $a x+b y+c z=d$.

Solution. The point $P=(0,0,1)$ on the graph is above $(0,0)$, so by our formula from class, a normal to the tangent plane at P is

$$
\left.\nabla f\right|_{(0,0)}-\overrightarrow{\boldsymbol{k}}=3 \overrightarrow{\boldsymbol{\imath}}-\overrightarrow{\boldsymbol{k}}
$$

and hence the point/normal formula $(\vec{n} \cdot \vec{X}=\vec{n} \cdot \vec{P})$ gives $3 x-z=(3 \overrightarrow{\boldsymbol{\imath}}-\overrightarrow{\boldsymbol{k}}) \cdot \overrightarrow{\boldsymbol{k}}=-1$.

