PRACTICE FINAL SOLUTIONS MATH 225

MAX EHRMAN

Problem 1. Do all Exercise 1 in all sections!

Problem 2.

Notice that $v_{1}-v_{2}=e_{3}, v_{1}-v_{3}=e_{2}$, and so $v_{1}-e_{2}-e_{3}=v_{2}+v_{3}-v_{1}=e_{1}$. We could compute the matrix directly, but we prefer to do so using the change of basis matrix from $\beta=\left\{e_{1}, e_{2}, e_{3}\right\}$ to $\gamma=\left\{v_{1}, v_{2}, v_{3}\right\}$ as we have just shown that this is indeed a basis. We see that $Q=[I]_{\beta}^{\gamma}=\left(\begin{array}{ccc}-1 & 1 & 1 \\ 1 & 0 & -1 \\ 1 & -1 & 0\end{array}\right)$ and $Q^{-1}=[I]_{\gamma}^{\beta}=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1\end{array}\right)$. We may now calculate $[T]_{\beta}=Q^{-1}[T]_{\gamma} Q=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1\end{array}\right)\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)\left(\begin{array}{ccc}-1 & 1 & 1 \\ 1 & 0 & -1 \\ 1 & -1 & 0\end{array}\right)=$ $\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1\end{array}\right)\left(\begin{array}{ccc}1 & -1 & 0 \\ -1 & 1 & 1 \\ 1 & 0 & -1\end{array}\right)=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & 1 \\ 2 & -1 & -1\end{array}\right)$.

Problem 3.

The characteristic polynomial of A is $\operatorname{det}(A-t I)=\operatorname{det}\left(\begin{array}{cc}-\sqrt{3} / 2-t & -1 / 2 \\ 1 / 2 & -\sqrt{3} / 2-t\end{array}\right)=$ $(\sqrt{3} / 2+t)^{2}+1 / 4=\left(t^{2}+\sqrt{3} t+3 / 4\right)+1 / 4=t^{2}+\sqrt{3} t+1$. This doesn't have real roots, so there are no real eigenvalues.

However, considering A as a complex matrix (in particular, computing A^{25} doesn't depend on whether you think of A as real or complex). Then over the complex numbers, this polynomial splits. Plugging into the quadratic equation, we see the roots of this polynomial are $\frac{-\sqrt{3} \pm \sqrt{3-4}}{2}=\frac{-\sqrt{3} \pm i}{2}$. Thus A has eigenvectors with these eigenvalues, and as there are two and A is two dimensional, these must be all of them. We solve for the eigenvectors:

$$
A-\frac{-\sqrt{3}+i}{2} I=\left(\begin{array}{cc}
-\sqrt{3} / 2-(\sqrt{3} / 2+i / 2) & -1 / 2 \\
1 / 2 & -\sqrt{3} / 2-(\sqrt{3} / 2+i / 2)
\end{array}\right)=\left(\begin{array}{cc}
-i / 2 & -1 / 2 \\
1 / 2 & -i / 2
\end{array}\right)=\left(\begin{array}{cc}
i & 1 \\
-1 & i
\end{array}\right) .
$$

This matrix is singular, as it should be, so the only relation is given by the top row, $i x+y=0$, i.e. $x=i y$. An eigenvector is thus $(i, 1)$. Similarly, an eigenvector for the

[^0]other eigenvalue $\frac{-\sqrt{3}-i}{2}$ is seen to be $(i,-1)$. So the basis $\gamma=\left\{v_{1}, v_{2}\right\}=\{(i, 1),(i,-1)\}$ diagonalizes A. Letting $Q=[I]_{\gamma}^{\beta}=\left(\begin{array}{cc}i & i \\ 1 & -1\end{array}\right), Q^{-1}=\left(\begin{array}{cc}-i / 2 & 1 / 2 \\ -i / 2 & -1 / 2\end{array}\right)$. Therefore we have

$$
Q^{-1} A Q=\left(\begin{array}{cc}
-i / 2 & 1 / 2 \\
-i / 2 & -1 / 2
\end{array}\right)\left(\begin{array}{cc}
-\frac{\sqrt{3}}{2} & -\frac{1}{2} \\
\frac{1}{2} & -\frac{\sqrt{3}}{2}
\end{array}\right)\left(\begin{array}{cc}
i & i \\
1 & -1
\end{array}\right)=\left(\begin{array}{cc}
\frac{-\sqrt{3}+i}{2} & 0 \\
0 & \frac{-3-i}{2}
\end{array}\right)=D .
$$

Finally, notice that $\frac{-\sqrt{3}+i}{2}=e^{5 \pi i / 6}$ and $\frac{-\sqrt{3}+i}{2}=e^{7 \pi i / 6}$. Therefore, raised to the 24 th power they are 1. So, $D^{24}=I$, so $D^{25}=D$, and therefore $A^{25}=\left(Q D Q^{-1}\right)^{25}=Q D^{25} Q^{-1}=$ $Q D Q^{-1}=A$.

Problem 4.

This is currently under construction.

Problem 5.

We see that the inner product of the first and fourth columns is $\frac{1}{\sqrt{6}} \neq 0$, so the matrix is not orthogonal. Normal means it commutes with its adjoint, i.e. its conjugate transpose. In this case all entries are real, so this is just its transpose. $\left.B B^{*}=\left(<R_{i}, R_{j}\right\rangle\right)$ where R_{i} is the ith row of B. $B^{*} B=\left(<C_{i}, C_{j}>\right)$, where C_{i} is the ith column of B. By inspection $13 / 12=<R_{1}, R_{1}>\neq<C_{1}, C_{1}>=1$, so B is not normal.

Problem 6.

We apply Gram-Schmidt. Let the above vectors be v_{1}, v_{2}, v_{3} respectively. Let $u_{1}=v_{1}$. Then $u_{2}=v_{2}-\frac{\left\langle v_{2}, v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}} v_{1}=(-1,4,4,-1)-6 / 4(1,1,1,1)=(-5 / 2,5 / 2,5 / 2,-5 / 2)$. Noting that multiplying by constants doesn't affect orthogonality, we replace u_{2} with $(-1,1,1,-1)$. Now $u_{3}=v_{3}-\frac{\left\langle v_{3}, u_{1}>\right.}{\left\|u_{1}\right\|^{2}} u_{1}-\frac{\left.\leq v_{3}, u_{2}\right\rangle}{\left\|u_{2}\right\|^{2}} u_{2}=(4,-2,2,0)-\frac{4}{4}(1,1,1,1)-\frac{-4}{4}(-1,1,1,-1)=$ (2, -2, 2, -2). Normalizing these, we obtain an orthonormal basis $\left\{u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}\right\}=$ $\{(1 / 2,1 / 2,1 / 2,1 / 2),(-1 / 2,1 / 2,1 / 2,-1 / 2),(1 / 2,-1 / 2,1 / 2,-1 / 2)\}$.

Problem 7.

We eliminate the xy-term by diagonalizing $A=\left(\begin{array}{ll}4 & 2 \\ 2 & 4\end{array}\right)$. This satisfies $4 x^{2}+4 x y+4 y^{2}=$ $\left(\begin{array}{ll}x & y\end{array}\right) A\binom{x}{y}$. This has characteristic polynomial $(4-t)^{2}-4=t^{2}-8 t+12=(t-6)(t-2)$. So its eigenvalues are 6 and 2. Let's find the eigenvectors: $A-6 I=\left(\begin{array}{cc}-2 & 2 \\ 2 & -2\end{array}\right) \rightarrow$ $\left(\begin{array}{cc}1 & -1 \\ 0 & 0\end{array}\right)$, so we need $x-y=0$, i.e. $x=y$, so $v_{1}=(1 / \sqrt{2}, 1 / \sqrt{2})$ is a unit eigenvector.
Similarly, $A-2 I=\left(\begin{array}{ll}2 & 2 \\ 2 & 2\end{array}\right)$ clearly has kernel $x-y=0$, so $v_{2}=(1 / \sqrt{2},-1 / \sqrt{2})$ is a unit
eigenvector. Now let $P=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$. Then $P^{t} A P=D=\left(\begin{array}{ll}6 & 0 \\ 0 & 2\end{array}\right)$. Let $X=\binom{x}{y}$, and let $X^{\prime}=P^{t} X$. Then $X^{t} A X=X^{t}\left(P D P^{t}\right) X=X^{\prime t} D X^{\prime}=6 x^{\prime 2}+2 y^{\prime 2}$, where $X^{\prime}=\binom{x^{\prime}}{y^{\prime}}$. $P^{t} X=1 / \sqrt{2}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)\binom{x}{y}=1 / \sqrt{2}\binom{x+y}{x-y}$. So after this change of basis, we have $6 x^{\prime 2}+2 y^{\prime 2}=1$, a standard form for an ellipse (i.e. $(x / a)^{2}+(y / b)^{2}=1$ with $a=1 / \sqrt{6}$, $b=1 / \sqrt{2})$.

[^0]: Date: April 29, 2014.

