YALE UNIVERSITY DEPARTMENT OF MATHEMATICS Math 225 Linear Algebra and Matrix Theory Spring 2014

Problem Set # 2 (due 4 pm Wednesday 29 January 2014)

Notation: Let F be a field, 0_F its (unique) additive identity, and 1_F its unique multiplicative identity. There is a natural map $\mathbb{Z} \to F$ so that for each integer $n \in \mathbb{Z}$, we can consider $n \in F$ as follows: if n = 0, then map n to 0_F ; if n > 0, then map n to the sum $1_F + \cdots + 1_F$ of 1_F with itself taken n times; if n < 0, then map n to the sum $(-1_F) + \cdots + (-1_F)$ of -1_F with itself taken -n times.

We say that the field F has **characteristic zero** if the map $\mathbb{Z} \to F$ is injective. However, it can happen that this map is not injective. For a prime number p, we say that F has **characteristic** p if this map sends p to 0_F . For example, \mathbb{Q} , \mathbb{R} , and \mathbb{C} have characteristic zero, while \mathbb{F}_p has characteristic p. It is a theorem from abstract algebra that either a field has characteristic zero or the smallest positive integer mapping to 0_F is actually a prime number.

Reading: FIS 1.4–1.6

Problems:

1. FIS 1.4 Exercises 1 (Either cite, prove, or provide a counterexample), 3bc (Show your work), 5eh (Show your work), 11, 13, 15.

2. FIS 1.5 Exercises 1 (Either cite, prove, or provide a counterexample), 2bcde, 3 (Just stare at it, you do not need to show your work), 8 (In part a, the book writes R for \mathbb{R}), 9, 10, 11 (The book writes Z_2 for \mathbb{F}_2), 12, 18, 20.

3. Let F be a field. Prove that two vectors (a, b) and (c, d) in F^2 are linearly dependent if ad-bc = 0 and are linearly independent if $ad - bc \neq 0$.