Yale University Department of Mathematics
Math 225 Linear Algebra and Matrix Theory
Spring 2014
Problem Set \# 3 (due 4 pm Wednesday 5 February 2014)

Notation: Let S and T be sets and $f: S \rightarrow T$ be a map. We say that f is injective (or one-toone) if $f(x)=f(y) \Rightarrow x=y$ (i.e., no two elements in S get mapped to the same element). We say that f is surjective (or onto) if for every $y \in T$ there exists an element $x \in S$ with $f(x)=y$ (i.e., every element in T gets mapped to). We say that f is bijective (or one-to-one and onto) if f is injective and surjective.

The cardinality of a finite set S is the number of elements in S.
Pigeon Hole Principle. If n pigeons are put into m pigeonholes, and $n>m$, then there is at least one pigeonhole with more than one pigeon.

A variant of the pigeonhole principle is the following useful theorem.
Theorem. Let S and T be finite sets of the same cardinality. Then a function $f: S \rightarrow T$ is injective if and only if it is surjective.

Reading: FIS 1.6, 2.1

Problems:

1. FIS 1.6 Exercises 1 (If true, then either cite or prove it, it false then provide a counterexample), 2bd (Show your work), 14, 19, 24.
2. FIS 2.1 Exercises 1 (If true, then either cite or prove it, it false then provide a counterexample), $3,5,9,11,16,21$.
3. Let F be a field and $V=F^{3}$. Let $W \subseteq V$ be the subspace of vectors with zero component sum, i.e., vectors (a, b, c) such that $a+b+c=0$. Let $S=\{(1,1,0),(1,0,1),(0,1,1)\} \subseteq V$.
(1) Prove that if the characteristic of V is not 2 , then S is a basis for V.
(2) Prove that if the characteristic of V is 2 , then S generates W. Find a subset of S that is a basis for W.
4. In this problem, you will prove that \mathbb{F}_{p} really is a field. The outstanding issue was the existence of multiplicative inverses. You can proceed by proving the following multiple lemmas.

Lemma 1. Prove that for $a, b \in \mathbb{F}_{p}$, if $a b=0$ then either $a=0$ or $b=0$.
Hint. You can use the following fact about prime numbers: if a and b are integers not divisible by a prime number p, then $a b$ is not divisible by p (this is a consequence of "prime factorization").
Lemma 2. For $a \in \mathbb{F}_{p}$, consider the $\operatorname{map} f_{a}: \mathbb{F}_{p} \rightarrow \mathbb{F}_{p}$ defined by $f_{a}(x)=a x$. Prove that if $a \neq 0$ then f_{a} is injective.

Finally, use pigeons (and pigeon holes) to conclude with a proof of:
Theorem 3. Each nonzero element of \mathbb{F}_{p} has a multiplicative inverse.

[^0]
[^0]: Yale University, Department of Mathematics, 10 Hillhouse Ave, New Haven, CT 06511
 E-mail address: asher.auel@yale.edu

