YALE UNIVERSITY DEPARTMENT OF MATHEMATICS Math 225 Linear Algebra and Matrix Theory Spring 2014

Problem Set # 4 (due 4 pm Wednesday 19 February 2014)

Notation: Let F be a field. Recall that $M_{m \times n}(F)$ is the F-vector space of $m \times n$ matrices with entries in F. For $A \in M_{m \times n}(F)$ define the **transpose** $A^t \in M_{n \times m}(F)$ as the matrix obtained by interchanging the rows and columns of A, i.e., the *ij*th entry of A^t is the *ji*th entry of A.

For $A \in M_{n \times n}(F)$ a square matrix, define the **trace** $\operatorname{tr}(A) \in F$ to be the sum of the diagonal entries of A, i.e., if $A = (a_{ij})$ then $\operatorname{tr}(A) = a_{11} + \cdots + a_{nn}$. You can check that $\operatorname{tr} : M_{n \times n}(F) \to F$ is actually a linear map of F-vector spaces.

Given a linear map $T: V \to V$ between an *F*-vector space *V* and itself, a subspace $W \subset V$ is called *T*-invariant if $R(T) \subset W$, i.e., *T* takes vectors from *W* back to vectors in *W*. For example, $\{0\} \subset V$ and $V \subset V$ are always *T*-invariant subspaces for any linear map $T: V \to V$.

Let W_1 and W_2 be vector spaces over a field F. Define the **cartesian product** $W_1 \times W_2$ to be the set of ordered pairs (w_1, w_2) of vectors $w_1 \in W_1$ and $w_2 \in W_2$. For example, $F^2 = F \times F$.

Let $W_1 \subset V$ and $W_2 \subset V$ be subspaces of a vector space V. The notation $W_1 + W_2$ denotes the subspace of V consisting of vectors $w_1 + w_2$ for $w_1 \in W_1$ and $w_2 \in W_2$. Rephrasing it another way, $W_1 + W_2 = \operatorname{span}(W_1 \cup W_2)$. We say that V is the **direct sum** of W_1 and W_2 , and write $V = W_1 \oplus W_2$, if $W_1 \cap W_2 = \{0\}$ and $W_1 + W_2 = V$.

Reading: FIS 2.2, 2.3, 2.4

Problems:

1. FIS 2.2 Exercises 1 (If true, then either cite or prove it, if false then provide a counterexample), 2bce, 4, 5acdfg, 8, 9, 11, 13.

2. FIS 2.3 Exercises 1 (If true, then either cite or prove it, if false then provide a counterexample), 4acd, 9, 11, 12 (If true, prove it, it false then provide a counterexample).

3. Let $W_1 \subset V$ and $W_2 \subset V$ be subspaces of an F-vector space V. Consider the map

$$\Sigma: W_1 \times W_2 \to W_1 + W_2$$

defined by $\Sigma(v, w) = v + w$. Verify that Σ is a linear map and is onto. Prove that if $V = W_1 \oplus W_2$ then in fact Σ is an isomorphism.