PRACTICE MIDTERM \#1

SOLUTIONS BY MAX EHRMAN

Exercise 1

(1), (2) S_{1}, S_{2} are the null spaces of the maps $T: V \rightarrow \mathbb{R}$ given by $T(f)=f(a)$ where $a=0,1$ respectively. As the rank of this map is 1 (the constant polynomials map onto \mathbb{R}, for example), and the dimension of V is 4 , by the Rank-Nullity Theorem, the dimension of S_{1} and S_{2} is three.
(3) S_{3} is not a subspace as it does not contain 0 , for example.
(4) S_{4} is a subspace, as it is the intersection of S_{1} and S_{2}. It is of dimension two: $\left\{x(x-1), x^{2}(x-1)\right\}$ is a basis.
(5) S_{5} is not a subspace, since it is the union of two subspaces ($S_{5}=S_{1} \cup S_{2}$) and neither contains the other (to refer to an exercise many of you have seen in recitation). Directly, we have $x \in S_{5}$ and $x-1 \in S_{5}$ but $f(x)=x+(x-1)=2 x-1 \notin S_{5}$, as $f(0)=-1$ and $f(1)=1$.
(6) S_{6} is a subspace, as it is the null space of the linear map $T: V \rightarrow V$ given by $T(f)=f(0)+f(1)$ (you should check that this is a linear map).
(7) S_{7} is a subspace, since the equation $p(0)^{2}+p(1)^{2}=0$ is equivalent to $p(0)=0$ and $p(1)=0$ (so in fact, $S_{7}=S_{4}$). Since $p(0)$ and $p(1)$ are real numbers, their squares are nonnegative, and hence the sum of their squares can only be zero when both are zero.

Exercise 2

(1) The subset $\{(0,1,3),(1,2,3),(2,3,1)\}=\left\{v_{1}, v_{2}, v_{3}\right\}$ is a basis. To prove this, first notice by inspection that v_{1} and v_{2} are not scalar multiples of each other, and are nonzero, so $\left\{v_{1}, v_{2}\right\}$ is a linearly independent set. Now, in order to show that we may add v_{3} to this set without losing linear independence, it is sufficient to show that $v_{3} \notin \operatorname{span}\left(\left\{v_{1}, v_{2}\right\}\right)$. Suppose by contradiction that we have $v_{3}=a v_{1}+b v_{2}$, i.e. $v_{3} \in \operatorname{span}\left(\left\{v_{1}, v_{2}\right\}\right)$. Then equating coordinates, we have $2=b, 3=a+2 b$, and $1=3 a+3 b$. Substituting $b=2$ in the second equation yields $3=a+4 \Rightarrow a=-1$, and plugging both of these into the third equation yields $1=3(-1)+3(2)=3$, a contradiction in the field \mathbb{R}. Therefore the set $\left\{v_{1}, v_{2}, v_{3}\right\}$ is linearly independent. As it has size three, and we know the dimension of \mathbb{R}^{3} is 3 , it is a basis.

To express $(3,3,3)$ in terms of this basis, we solve the equations $a(0,1,3)+$ $b(1,2,3)+c(2,3,1)=(3,3,3)$, i.e. $b+2 c=3, a+2 b+3 c=3,3 a+3 b+c=3$. Subtracting the second from the first, we get $a+b+c=0$. Subtracting three times this from the third equation, we find $-2 c=3$, so $c=-3 / 2$. The original first equation $b+2 c=3$ now gives $b=6$, and the equation $a+b+c=0$ gives $a=-9 / 2$.
(2) To extend this linearly independent set to a basis, it suffices to add any vector outside of $\operatorname{span}\left(S_{2}\right)$. Notice that the first two coordinates of each element in S_{2} are equal. Thus any linear combination of elements in S_{2} will have the first two coordinates equal. So, the vector $(1,0,0)$, for example, does not lie in $\operatorname{span}\left(S_{2}\right)$, and so extends S_{2} to a basis. By inspection, $(3,3,5)=(1,1,1)+2(1,1,2)$.

Exercise 3

$N(T)=\left\{f \in \mathrm{P}_{2}(\mathbb{R}):(x-1) f=0\right\}=\{0\}$, as the degree of $(x-1) f(x)$ is at least one unless $f(x)=0$. Therefore T is one-to-one and has nullity $(T)=0$ and $\operatorname{rank}(T)=3$. This implies that the images of vectors forming a basis for $\mathrm{P}_{2}(\mathbb{R})$ will be a basis for the range (they will generate, and there are the correct number of them). Therefore $\left\{T(1), T(x), T\left(x^{2}\right)\right\}=$ $\left\{(x-1),(x-1) x,(x-1) x^{2}\right\}$ is a basis for the range of T.

Exercise 4

(1) If e^{x} and $x e^{x}$ were linearly dependent, there would exist some scalar $c \in \mathbb{R} \backslash\{0\}$ such that $c x e^{x}=e^{x}$. As the right-hand side is always positive, and the left-hand side can be negative regardless of the value of c, this is impossible.
(2) Let $f(x)=a e^{x}+b x e^{x}$ be an element of V. Then $f(x) \in N\left(\frac{d}{d x}\right)$ if and only if

$$
\frac{d f}{d x}=a e^{x}+b e^{x}+b x e^{x}=0=(a+b) e^{x}+b x e^{x}=0 .
$$

Since e^{x} and $x e^{x}$ are linearly independent, we see that $f(x) \in N\left(\frac{d}{d x}\right)$ if and only if $a+b=0$ and $b=0$. As the only solutions are $a=b=0$, we have that $N\left(\frac{d}{d x}\right)=0$. Once again, $\frac{d}{d x}: V \rightarrow V$ is one-to-one, has nullity 0 , rank 2 , and a basis for the range is given by the images of the basis vectors of the domain, i.e. $\left\{e^{x}, e^{x}+x e^{x}\right\}$. But since $\operatorname{span}\left(\left\{e^{x}, e^{x}+x e^{x}\right\}\right)=\operatorname{span}\left(\left\{e^{x}, x e^{x}\right\}\right)=V$, we see that this map is also onto.
(3) As we have $\frac{d}{d x} e^{x}=e^{x}$ and $\frac{d}{d x} x e^{x}=e^{x}+x e^{x}$, the matrix is $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$.

