Yale University Department of Mathematics
Math 225 Linear Algebra and Matrix Theory
Spring 2017
Problem Set \# 1 (due in class Thursday 26 January)
Notation: If S is a set of elements (numbers, vectors, rabbits, ...) then the notation " $s \in S$ " means " s is an element of the set S." If T is another set, then the notation " $T \subseteq S$ " means "every element of T is an element of S " or " T is a subset of S." For example, the set of squares is a subset of the set of rectangles.

We have notations for the following commonly referred to sets:

- \mathbb{Z} is the set of integers (i.e., whole numbers, positive or negative).
- \mathbb{Q} is the set of rational numbers (i.e., fractions $\frac{a}{b}$ for $a \in \mathbb{Z}$ and $b \in \mathbb{Z}$ with $b \neq 0$). It is a field, see Appendix C.
- \mathbb{R} is the set of real numbers. It is a field, see Appendix C.
- \mathbb{C} is the set of complex numbers (i.e., $a+b i$ for $a \in \mathbb{R}$ and $b \in \mathbb{R}$, where $i^{2}=-1$). It is a field, see Appendix C.
- If F is any field then F^{n} is the set of ordered n-tuples $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ where each $a_{i} \in F$ for $i=1, \ldots, n$. It is a vector space over F, see FIS 1.2 Example 1 .
If S and T are sets, then a function $f: S \rightarrow T$ from S to T is the a rule that associates to each element $s \in S$, an element $f(s) \in T$. For example, $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x^{2}$ for all $x \in \mathbb{R}$, is a function. Another example, if S is the set of people in the room, $f: S \rightarrow \mathbb{Z}$ assigning to each person $p \in S$, their height $f(p) \in \mathbb{Z}$ in inches rounded up to the nearest inch, is a function.

Let S be a set and F be a field. Define $\mathcal{F}(S, F)$ to be the set of all functions $f: S \rightarrow F$. Then $\mathcal{F}(S, F)$ is a vector space over F by FIS 1.2 Example 3. The set of polynomials $\mathrm{P}(F)$ with coefficients in F is a vector space over F by FIS 1.2 Example 4. In fact, $\mathrm{P}(F) \subset \mathcal{F}(F, F)$ is a subspace. For each $n \geq 0$, the set of polynomials $\mathrm{P}_{n}(F)$ of degree at most n and with coefficients in F is also a vector space over F, and a subspace of $\mathrm{P}(F)$.

Reading: FIS 1.1-1.3

Problems:

1. FIS 1.2 Exercises 1 (For each statement, if it's true, either cite a Definition, Lemma, Proposition, Theorem, or Corollary from the book, or give a proof; if it is false, provide a counterexample), 9 (Hint: To prove that any zero vector is unique, suppose that 0 and 0^{\prime} are zero vectors and then show using the zero vector axioms that $0=0^{\prime}$), 10 (Hint: You can assume standard properties of differentiable functions and the results from §1.3), 13, 17.
2. FIS 1.3 Exercises 1 (See remark for exercise 1 above), 8abcf, 10, 11, 12, 20.
3. Let V be the set of positive real numbers. Define an addition $+_{V}$ by $x+_{V} y=x y$ for $x, y \in V$ and scalar multiplication \cdot_{V} by $c \cdot v x=x^{c}$ for $x \in V$ and $c \in \mathbb{R}$. Prove that $\left(V,+{ }_{V},{ }^{\prime}\right)$ is an \mathbb{R}-vector space.
4. Prove that the set $\mathbb{Q}(\sqrt{5})$, of real numbers of the form $a+b \sqrt{5}$ for $a \in \mathbb{Q}$ and $b \in \mathbb{Q}$, is a field. (Hint: The most important field axiom you must verify is that every nonzero element of $\mathbb{Q}(\sqrt{5})$ has a multiplicative inverse.)
