Yale University Department of Mathematics
Math 225 Linear Algebra and Matrix Theory
Spring 2017
Problem Set \# 2 (due in class Thursday 2 February)

Notation: Let F be a field, 0_{F} its (unique) additive identity, and 1_{F} its unique multiplicative identity. Recall that $\mathbb{Z}=\{\ldots,-2,-1,0,1, \ldots\}$ is the set of integers. There is a natural map $\iota: \mathbb{Z} \rightarrow F$ defined as follows: if $n=0$ then $\iota(0)=0_{F}$; if $n>0$ then $\iota(n)=1_{F}+\cdots+1_{F}$ is the sum of 1_{F} with itself taken n times; if $n<0$, then $\iota(n)=-\iota(|n|)$.

We say that the field F has characteristic zero if $\iota(n)=0_{F}$ is only possible when $n=0$. However, this can fail. For a prime number p, we say that F has characteristic p if $\iota(p)=0_{F}$. For example, \mathbb{Q}, \mathbb{R}, and \mathbb{C} have characteristic zero, while \mathbb{F}_{p} has characteristic p. It is a theorem from abstract algebra that a field either has characteristic zero or it has characteristic p for a unique prime number p.

Let S and T be sets and $f: S \rightarrow T$ be a map. We say that f is injective (or one-to-one) if $f(x)=f(y) \Rightarrow x=y$ (i.e., no two elements in S get mapped to the same element). We say that f is surjective (or onto) if for every $y \in T$ there exists an element $x \in S$ with $f(x)=y$ (i.e., every element in T gets mapped to). We say that f is bijective (or one-to-one and onto) if f is injective and surjective. The cardinality of a finite set S is the number of elements in S.

Pigeon Hole Principle. If n pigeons are put into m pigeonholes, and $n>m$, then there is at least one pigeonhole with more than one pigeon.

A variant of the pigeonhole principle is the following useful theorem.
Theorem. Let S and T be finite sets of the same cardinality. Then a function $f: S \rightarrow T$ is injective if and only if it is surjective.

Reading: FIS 1.4-1.6

Problems:

1. FIS 1.4 Exercises 1 (Either cite, prove, or provide a counterexample), 3bc (Show your work), 5h (Show your work), 11, 13, 15.
2. FIS 1.5 Exercises 1 (Either cite, prove, or provide a counterexample), 2bcd, 3 (Just stare at it, you do not need to show your work), 8 (In part a, the book writes R for \mathbb{R}), $9,10,11$ (The book writes Z_{2} for \mathbb{F}_{2}), $12,18,20$.
3. This problem is intentionally left blank.
4. Let F be a field. Prove that two vectors (a, b) and (c, d) in F^{2} are linearly dependent if $a d-b c=0$ and are linearly independent if $a d-b c \neq 0$ (Hint. Try using the contrapositive and $\S 1.5 \# 9$).
5. In this problem, you will prove that \mathbb{F}_{p} really is a field. The outstanding issue was the existence of multiplicative inverses. You can proceed by proving the following multiple lemmas.

Lemma 0.1. Prove that for $a, b \in \mathbb{F}_{p}$, if $a b=0$ then either $a=0$ or $b=0$.
Hint. You can use the following fact about prime numbers: if a and b are integers not divisible by a prime number p, then $a b$ is not divisible by p (this is a consequence of "prime factorization").

Lemma 0.2. For $a \in \mathbb{F}_{p}$, consider the map $f_{a}: \mathbb{F}_{p} \rightarrow \mathbb{F}_{p}$ defined by $f_{a}(x)=a x$. Prove that if $a \neq 0$ then f_{a} is injective.

Finally, use pigeons (and pigeon holes) to conclude with a proof of:
Theorem 0.3. Each nonzero element of \mathbb{F}_{p} has a multiplicative inverse.

