Yale University Department of Mathematics
Math 225 Linear Algebra and Matrix Theory
Spring 2017
Problem Set \# 6 (due in class Thursday March 2nd)
Reading: FIS 2.4, 2.5, 3.1

Problems:

1. FIS 2.4 Exercises 1 (If true, then either cite or prove it, if false then provide a counterexample), 9 (By "arbitrary matrices" they mean matrices that are not necessarily square), 10 (The definition of a matrix A being invertible is that there exists B such that both $A B$ and $B A$ are the identity, in this problem you prove that you only need to know one of these), 15,17 (For the first part, use the restriction of T to V_{0}; for the second part, use exercise 15), 20.
2. FIS 2.5 Exercises 1 (If true, then either cite or prove it, if false then provide a counterexample), 2d, 3b, 6bd, 13.
3. FIS 3.1 Exercises 1 (If true, cite or prove it; if false, give a counterexample), 3c, 9.
4. Let F be a field and consider the matrix

$$
M=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

in $M_{2 \times 2}(F)$.
(a) Prove that M is invertible if and only if $a d-b c \neq 0$, in which case

$$
M^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

(Hint. Use the Rank-Nullity theorem and work you did on Problem Set \# 2.)
(b) Write down all invertible matrices in $M_{2 \times 2}\left(\mathbb{F}_{2}\right)$.
5. Let V be an \mathbb{F}_{p}-vector space of dimension n.
(a) Calculate the number of vectors in V. This is a function of p and n.
(Hint: You can you assume that $V=\mathbb{F}_{p}^{n}$. Why?)
(b) For each $1 \leq k \leq n$, calculate the number of k-tuples of linearly independent vectors in V. This is a function of p, n, and k.
(Hint: Start with a non-zero vector v_{1}, then choose v_{2} not in the span of $\left\{v_{1}\right\}$, then choose v_{3} not in the span of $\left\{v_{1}, v_{2}\right\}$, and so on, using the fact that you know the size of the span by the previous part.)
(c) Calculate the number of invertible $n \times n$ matrices over \mathbb{F}_{p}.
(Hint: Use the previous part.)

Yale University, Department of Mathematics, 10 Hillhouse Ave, New Haven, CT 06511
E-mail address: asher. auel@yale.edu

