PRACTICE MIDTERM #1

Exercise 1

- (1), (2) S_1 , S_2 are the null spaces of the maps $T: V \to \mathbb{R}$ given by T(f) = f(a) where a = 0, 1 respectively. As the rank of this map is 1 (the constant polynomials map onto \mathbb{R} , for example), and the dimension of V is 4, by the Rank-Nullity Theorem, the dimension of S_1 and S_2 is three.
 - (3) S_3 is not a subspace as it does not contain 0, for example.
 - (4) S_4 is a subspace, being the intersection of the subspaces S_1 and S_2 . It is of dimension two: $\{x(x-1), x^2(x-1)\}$ is a basis.
 - (5) S_5 is not a subspace, since it is the union of two subspaces $(S_5 = S_1 \cup S_2)$ and neither contains the other (to refer to an exercise many of you have seen in recitation). Directly, we have $x \in S_5$ and $x 1 \in S_5$ but $f(x) = x + (x 1) = 2x 1 \notin S_5$, as f(0) = -1 and f(1) = 1.
 - (6) S_6 is a subspace, as it is the null space of the linear map $T: V \to V$ given by T(f) = f(0) + f(1) (you should check that this is a linear map).
 - (7) S_7 is a subspace, since the equation $p(0)^2 + p(1)^2 = 0$ is equivalent to p(0) = 0 and p(1) = 0 (so in fact, $S_7 = S_4$). Since p(0) and p(1) are real numbers, their squares are nonnegative, and hence the sum of their squares can only be zero when both are zero.

Exercise 2

(1) The subset $\{(0,1,3),(1,2,3),(2,3,1)\} = \{v_1,v_2,v_3\}$ is a basis. To prove this, first notice by inspection that v_1 and v_2 are not scalar multiples of each other, and are nonzero, so $\{v_1,v_2\}$ is a linearly independent set. Now, in order to show that we may add v_3 to this set without losing linear independence, it is sufficient to show that $v_3 \notin \text{span}(\{v_1,v_2\})$. Suppose by contradiction that we have $v_3 = av_1 + bv_2$, i.e. $v_3 \in \text{span}(\{v_1,v_2\})$. Then equating coordinates, we have 2 = b, 3 = a + 2b, and 1 = 3a + 3b. Substituting b = 2 in the second equation yields $3 = a + 4 \Rightarrow a = -1$, and plugging both of these into the third equation yields 1 = 3(-1) + 3(2) = 3, a contradiction in the field \mathbb{R} . Therefore the set $\{v_1, v_2, v_3\}$ is linearly independent. As it has size three, and we know the dimension of \mathbb{R}^3 is 3, it is a basis.

To express (3,3,3) in terms of this basis, we solve the equations a(0,1,3)+b(1,2,3)+c(2,3,1)=(3,3,3), i.e. b+2c=3, a+2b+3c=3, 3a+3b+c=3. Subtracting the second from the first, we get a+b+c=0. Subtracting three times this from the third equation, we find -2c=3, so c=-3/2. The original first equation b+2c=3 now gives b=6, and the equation a+b+c=0 gives a=-9/2.

(2) To extend this linearly independent set to a basis, it suffices to add any vector outside of span(S_2). Notice that the first two coordinates of each element in S_2 are equal. Thus any linear combination of elements in S_2 will have the first two coordinates equal. So, the vector (1,0,0), for example, does not lie in span(S_2), and so extends S_2 to a basis. By inspection, (3,3,5) = (1,1,1) + 2(1,1,2).

2

Exercise 3

 $N(T) = \{f \in \mathsf{P}_2(\mathbb{R}) : (x-1)f = 0\} = \{0\}$, as the degree of (x-1)f(x) is at least one unless f(x) = 0. Therefore T is one-to-one and has $\operatorname{nullity}(T) = 0$ and $\operatorname{rank}(T) = 3$. This implies that the images of vectors forming a basis for $\mathsf{P}_2(\mathbb{R})$ will be a basis for the range (they will generate, and there are the correct number of them). Therefore $\{T(1), T(x), T(x^2)\} = \{(x-1), (x-1)x, (x-1)x^2\}$ is a basis for the range of T.

Exercise 4

- (1) If e^x and xe^x were linearly dependent, there would exist some scalar $c \in \mathbb{R} \setminus \{0\}$ such that $cxe^x = e^x$. As the right-hand side is always positive, and the left-hand side can be negative regardless of the value of c, this is impossible.
- (2) Let $f(x) = ae^x + bxe^x$ be an element of V. Then $f(x) \in N\left(\frac{d}{dx}\right)$ if and only if $\frac{df}{dx} = ae^x + be^x + bxe^x = 0 = (a+b)e^x + bxe^x = 0.$

Since e^x and xe^x are linearly independent, we see that $f(x) \in N\left(\frac{d}{dx}\right)$ if and only if a+b=0 and b=0. As the only solutions are a=b=0, we have that $N\left(\frac{d}{dx}\right)=0$. Once again, $\frac{d}{dx}:V\to V$ is one-to-one, has nullity 0, rank 2, and a basis for the range is given by the images of the basis vectors of the domain, i.e. $\{e^x,e^x+xe^x\}$. But since $\mathrm{span}(\{e^x,e^x+xe^x\})=\mathrm{span}(\{e^x,xe^x\})=V$, we see that this map is also onto.

(3) As we have $\frac{d}{dx}e^x = e^x$ and $\frac{d}{dx}xe^x = e^x + xe^x$, the matrix is $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

Exercise 5

Let $\varepsilon = \{e_1, e_2, e_3, e_4, e_5\}$ be the standard ordered basis of \mathbb{R}^5 and let $\gamma = \{\gamma_1, \dots, \gamma_5\} = \{e_2, e_4, e_5, e_1, e_3\}$ be a different ordered basis, just given by a permutation of the basis vectors. Then Q is the change of basis matrix $[I]_{\gamma}^{\varepsilon}$, and so $Q^{-1}AQ$ will simply be $[L_A]_{\gamma}$ (see Theorem 2.23 and its Corollary).

So we need to compute the matrix representation $[L_A]_{\gamma}$. For simplicity of notation, let $v = e_1 + e_2 + e_3 + e_4 + e_5$ (represented by the vector of all 1's). Then $A(\gamma_1) = A(e_2) = v - e_3 = v - \gamma_5$,

so the first column of $[L_A]_{\gamma}$ is $\begin{pmatrix} 1\\1\\1\\0 \end{pmatrix}$. Similarly we compute $[L_A]_{\gamma} = \begin{pmatrix} 1 & 1 & 1 & 0 & 1\\1 & 1 & 1 & 1 & 0\\1 & 0 & 1 & 1 & 1\\1 & 1 & 1 & 1 & 1\\0 & 1 & 1 & 1 & 1 \end{pmatrix}$.