
PRACTICE PROBLEM SOLUTIONS

MATH 225 SPRING 2018

1. Do Exercise 1 in all sections!

2. The characteristic polynomial of A is

det(A− tI) = det

(
−
√

3/2− t −1/2

1/2 −
√

3/2− t

)
= t2 +

√
3t+ 1

(Handy formula: t2−Tr(A)t+ det(A).) Since the discriminant (
√

3)2− 4 · 1 · 1 = −1 of this
quadratic polynomial is negative, it doesn’t have real roots. In particular, there are no real
eigenvalues.

However, consideringA as a complex matrix (in particular, computingA25 doesn’t depend
on whether you think of A as real or complex), it does have eigenvalues. The quadratic

formula, gives the roots of the characteristic polynomial as −
√
3±i
2 . Since A is a 2×2 matrix

with two distinct eigenvalues, A is diagonalizable. Let’s solve for the eigenvectors:

A− −
√

3 + i

2
I =

(
−i/2 −1/2
1/2 −i/2

)
=

1

2

(
i 1
−1 i

)
.

This matrix has rank 1 (as it should), so the columns are scalar multiples of each other,

and we can readily pick off a generator of the null space. For example, v =

(
i
1

)
works, so

this is also an eigenvector. Similarly, an eigenvector for the other eigenvalue −
√
3−i
2 is seen

to be w =

(
i
−1

)
. So the basis γ = {v, w} diagonalizes A. Letting

Q = [I]εγ =

(
i i
1 −1

)
we have

Q−1AQ =

(
−
√
3+i
2 0

0 −
√
3−i
2

)
= D.

Finally, notice that

−
√

3 + i

2
=
−
√

3

2
+

1

2
i = cos(5π/6) + sin(5π/6)i = e5πi/6

and similary −
√
3+i
2 = e7πi/6. In particular,

(
−
√
3±i
2

)12
= 1. Hence D12 = I and so

D25 = D. Therefore A25 = (QDQ−1)25 = QD25Q−1 = QDQ−1 = A.

3. The characteristic polynomial of A is t2 − 2t = t(t− 2), which has distinct roots, hence
A is diagonalizable. The eigenvalues are 0 and 2. The null space of A and A − 2I are
generated by (1,−1) and (1, 1), respectively, giving a basis of eigenvectors.
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To compute the characteristic polynomial of B, we expand det(B−tI) by cofactors along
the middle column, yielding (1 − t)(t2 − t) = −t(t − 1)2. Hence the eigenvalues are 0 (of
multiplicity 1) and 1 (of multiplicity 2). This implies that B has nullity 1 (you should know
why). A generator for the nullspace of B can be spotted (1,−1, 1) by looking for a linear
dependence in the columns. To compute the 1-eigenspace, we see that the matrix

B − I =

 1 0 −2
−1 0 2
1 0 −2


has rank 1, hence nullity 2 (the same as the multiplicity), with null space generated by
(0, 1, 0) and (2, 0, 1). So B is actually diagonalizable and we’ve already found a basis of
eigenvectors.

To compute the characteristic polynomial of C, we first expand det(C − tI) by cofactors
along the third row, eventually yielding −t(−t(1− t)2) = t2(t− 1)2. Hence the eigenvalues
are 0 and 1 (both of multiplicity 2). The null space can be computed by spotting linear
relations amongst the columns: (1, 0, 0,−1) and (0, 1, 1,−1); so good so far. To compute
the 1-eigenspace, we see that the matrix

C − I =


0 1 0 1
1 0 0 1
0 0 −1 0
0 −1 1 −1


has rank 3 (for example, the first three columns are linearly independent). Hence it has
nullity 1. Hence the 1-eigenspace is 1-dimensional but the eigenvalue has multiplicity 2. So
C is not diagonalizable.

4. We see that the inner product of the first and fourth columns is 1/
√

6 6= 0, so the matrix
cannot be orthogonal. (Remember, the columns of an orthogonal matrix are an orthonormal
basis of Rn with the standard dot product.) Normal means it commutes with its adjoint,
i.e., its transpose (since it’s a real matrix). Now use the handy formulas: the ijth entry if
BBt is 〈Ri, Rj〉, where Ri is the ith row of B; also the ijth entry of BtB is 〈Ci, Cj〉, where
Ci is the ith column of B. By inspection 13/12 = 〈R1, R1〉 6= 〈C1, C1〉 = 1, so B is not
normal.

5. We apply Gram–Schmidt. Let the above vectors be v1, v2, v3, respectively, written as
rows. Let u1 = v1. Then

u2 = v2 −
〈v2, v1〉
||v1||2

v1 = (−1, 4, 4,−1)− 6/4(1, 1, 1, 1) = (−5/2, 5/2, 5/2,−5/2).

Noting that multiplying by constants doesn’t affect orthogonality, we can replace u2 with
(−1, 1, 1,−1). Now

u3 = v3−
〈v3, u1〉
||u1||2

u1−
〈v3, u2〉
||u2||2

u2 = (4,−2, 2, 0)−4

4
(1, 1, 1, 1)−−4

4
(−1, 1, 1,−1) = (2,−2, 2,−2).

Normalizing these, we obtain an orthonormal basis

{u′1, u′2, u′3} = {(1/2, 1/2, 1/2, 1/2), (−1/2, 1/2, 1/2,−1/2), (1/2,−1/2, 1/2,−1/2)}.
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6. The matrix, let’s call it A, is symmetric and real, so is self-adjoint with respect to the
standard dot product on R3. By the Spectral Theorem, we know there is an orthonormal
basis of its eigenvectors. Already, we can see that w1 = (1, 1, 1) is an eigenvector with
eigenvalue −1. In general, computing the characteristic polynomial

(1− t)3 − 1− 1− 3(1− t) = −t3 + 3t2 − 4 = −(t− 2)2(t+ 1)

we see that the eigenvalues are −1 (with multiplicity 1) and 2 (with multiplicity 2). Trick:
the fact that we already spotted an (−1)-eigenvector meant that we already knew that
the characteristic polynomial was divisible by (t + 1). Since −1 has multiplicity 1, and
we’ve already found an eigenvector, it generates the whole eigenspace. To compute the
2-eigenspace, we see that

A− 2I =

−1 −1 −1
−1 −1 −1
−1 −1 −1


has rank 1, hence nullity 2 (as it should), with null space generated by w2 = (1,−1, 0)
and w3 = (1, 0,−1). So we’ve found a basis of eigenvectors. Now we need to make
these orthonormal! Since A is normal, the eigenspaces for different eigenvalues are or-
thogonal, and indeed, we can see that 〈w1, w2〉 = 〈w1, w3〉 = 0. However, inside the 2-
eigenspace, 〈w2, w3〉 = 1, so we need to find an orthogonal basis. We do Gram–Schmidt

on {w2, w3}, modifying w3 to v3 = w3 − 〈w3,w2〉
‖w2‖2 w2 = w3 − 1

2w2 = (12 ,
1
2 ,−1). Now

that {w1, w2, v3} is orthogonal, we normalize to get an orthonormal basis of eigenvectors{
1√
3
(1, 1, 1), 1√

2
(1,−1, 0), 1√

6
(1, 1,−2)

}
.

7. We eliminate the xy-term by orthogonally diagonalizing the matrix

A =

(
4 1
1 4

)
.

since 4x2 + 2xy + 4y2 = XtAX where X =

(
x
y

)
. Remembering the handy formula, A has

characteristic polynomial t2 − 8t + 15 = (t − 3)(t − 5), so its eigenvalues are 3 and 5. To
find the eigenvectors, we see that

A− 3I =

(
1 1
1 1

)
and A− 5I =

(
−1 1
1 −1

)
each have rank 1 (as expected), and have null spaces generated by w1 = (1,−1) and
w2 = (1, 1), respectively. Now we find an orthonormal basis of eigenvectors. Since A is
symmetric, it is normal, hence eigenspaces for different eigenvalues are orthogonal. Indeed,
〈w1, w2〉 = 0, so we just need to normalize. So

{
1√
2
(1,−1), 1√

2
(1, 1)

}
is an orthonormal

basis of eigenvectors. Hence the change of basis matrix Q = 1√
2

(
1 1
−1 1

)
to this new basis

will orthogonally diagonalize A. Indeed, QtAQ = D =

(
3 0
0 5

)
, equivalently, A = QDQt.

Letting X ′ =

(
x′

y′

)
= QtX = 1√

2

(
x− y
x+ y

)
, then we have

4x2 + 2xy + 4y2 = XtAX = Xt(QDQt)X = (XtQ)D(QtX) = X ′tDX ′ = 3x′2 + 5y′2



4 PRACTICE PROBLEM SOLUTIONS MATH 225 SPRING 2018

So after this change of basis, we have 3x′2 +5y′2 = 1, which is a standard form for an ellipse
(i.e., (x′/a)2 + (y′/b)2 = 1 with a = 1√

3
, b = 1√

5
). We can even rewrite the equation

4x2 + 2xy + 4y2 =

(
x− y√

2/3

)2

+

(
x+ y√

2/5

)2

= 1.

8. Do this one on your own!


