YALE UNIVERSITY DEPARTMENT OF MATHEMATICS Math 225 Linear Algebra and Matrix Theory Spring 2018

Problem Set # 1 (due in class Thursday 25 January)

Notation: If S is a set of elements (numbers, vectors, rabbits, ...) then the notation " $s \in S$ " means "s is an element of the set S." If T is another set, then the notation " $T \subseteq S$ " means "every element of T is an element of S" or "T is a **subset** of S." For example, the set of squares is a subset of the set of rectangles.

We have notations for the following commonly referred to sets:

- \mathbb{Z} is the set of integers (i.e., whole numbers, positive or negative).
- \mathbb{Q} is the set of rational numbers (i.e., fractions $\frac{a}{b}$ for $a \in \mathbb{Z}$ and $b \in \mathbb{Z}$ with $b \neq 0$). It is a field, see Appendix C.
- \mathbb{R} is the set of real numbers. It is a field, see Appendix C.
- \mathbb{C} is the set of complex numbers (i.e., a + bi for $a \in \mathbb{R}$ and $b \in \mathbb{R}$, where $i^2 = -1$). It is a field, see Appendix C.
- If F is any field then F^n is the set of ordered n-tuples (a_1, a_2, \ldots, a_n) where each $a_i \in F$ for $i = 1, \ldots, n$. It is a vector space over F, see FIS 1.2 Example 1.

If S and T are sets, then a function $f: S \to T$ from S to T is the a rule that associates to each element $s \in S$, an element $f(s) \in T$. For example, $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^2$ for all $x \in \mathbb{R}$, is a function. Another example, if S is the set of people in the room, $f: S \to \mathbb{Z}$ assigning to each person $p \in S$, their height $f(p) \in \mathbb{Z}$ in inches rounded up to the nearest inch, is a function.

Let S be a set and F be a field. Define $\mathcal{F}(S, F)$ to be the set of all functions $f : S \to F$. Then $\mathcal{F}(S, F)$ is a vector space over F by FIS 1.2 Example 3. The set of polynomials $\mathsf{P}(F)$ with coefficients in F is a vector space over F by FIS 1.2 Example 4. In fact, $\mathsf{P}(F) \subset \mathcal{F}(F, F)$ is a subspace. For each $n \geq 0$, the set of polynomials $\mathsf{P}_n(F)$ of degree at most n and with coefficients in F is also a vector space over F, and a subspace of $\mathsf{P}(F)$.

Reading: FIS 1.1–1.3

Problems:

1. FIS 1.2 Exercises 1 (For each statement, if it's true, either cite a Definition, Lemma, Proposition, Theorem, or Corollary from the book, or give a proof; if it is false, provide a counterexample), 9 (Hint: To prove that a zero vector is unique, suppose that 0 and 0' are zero vectors and then show using the zero vector axioms that 0 = 0'), 10 (Hint: You can assume standard properties of differentiable functions and the results from §1.3), 13, 17.

2. FIS 1.3 Exercises 1 (See remark for exercise 1 above), 8abcf, 10, 11, 12, 20.

3. Let V be the set of positive real numbers. Define an addition $+_V$ by $x +_V y = xy$ for $x, y \in V$ and scalar multiplication \cdot_V by $c \cdot_V x = x^c$ for $x \in V$ and $c \in \mathbb{R}$. Prove that $(V, +_V, \cdot_V)$ is an \mathbb{R} -vector space.

4. Prove that the set $\mathbb{Q}(\sqrt{7})$, of real numbers of the form $a + b\sqrt{7}$ for $a \in \mathbb{Q}$ and $b \in \mathbb{Q}$, is a field. (Hint: The most important field axiom you must verify is that every nonzero element of $\mathbb{Q}(\sqrt{7})$ has a multiplicative inverse.)

5. Compute 2^{-1} in the fields \mathbb{F}_p for p = 3, 5, 7, 11, 13, 17. Do you see any pattern? Find, and prove, a closed formula (only depending on p) for 2^{-1} in \mathbb{F}_p for any odd prime number p.

Yale University, Department of Mathematics, 10 Hillhouse Ave, New Haven, CT 06511 $\textit{E-mail address:}\ \texttt{asher.auel@yale.edu}$