YALE UNIVERSITY DEPARTMENT OF MATHEMATICS Math 225 Linear Algebra and Matrix Theory Spring 2018

Problem Set # 2 (due in class Thursday 1 February)

Notation: Let F be a field, 0_F its (unique) additive identity, and 1_F its unique multiplicative identity. Recall that $\mathbb{Z} = \{\dots, -2, -1, 0, 1, \dots\}$ is the set of integers. There is a natural map $\iota : \mathbb{Z} \to F$ defined as follows: if n = 0 then $\iota(0) = 0_F$; if n > 0 then $\iota(n) = 1_F + \dots + 1_F$ is the sum of 1_F with itself taken n times; if n < 0, then $\iota(n) = -\iota(|n|)$.

We say that the field F has **characteristic zero** if $\iota(n) = 0_F$ is only possible when n = 0. However, this can fail. For a prime number p, we say that F has **characteristic** p if $\iota(p) = 0_F$. For example, \mathbb{Q} , \mathbb{R} , and \mathbb{C} have characteristic zero, while \mathbb{F}_p has characteristic p. It is a theorem from abstract algebra that a field either has characteristic zero or it has characteristic p for a unique prime number p.

Let S and T be sets and $f: S \to T$ be a map. We say that f is **injective** (or **one-to-one**) if $f(x) = f(y) \Rightarrow x = y$ (i.e., no two elements in S get mapped to the same element). We say that f is **surjective** (or **onto**) if for every $y \in T$ there exists an element $x \in S$ with f(x) = y (i.e., every element in T gets mapped to). We say that f is **bijective** (or **one-to-one and onto**) if f is injective and surjective. The **cardinality** of a finite set S is the number of elements in S.

Pigeon Hole Principle. If n pigeons are put into m pigeonholes, and n > m, then there is at least one pigeonhole with more than one pigeon.

A variant of the pigeonhole principle is the following useful theorem.

Theorem. Let S and T be finite sets of the same cardinality. Then a function $f : S \to T$ is injective if and only if it is surjective.

Reading: FIS 1.4–1.6

Problems:

1. FIS 1.4 Exercises 1 (Either cite, prove, or provide a counterexample), 3bc (Show your work), 5h (Show your work), 11, 13, 15.

2. FIS 1.5 Exercises 1 (Either cite, prove, or provide a counterexample), 2bcd, 3 (Just stare at it, you do not need to show your work), 8 (In part a, the book writes R for \mathbb{R}), 9, 10, 11 (The book writes Z_2 for \mathbb{F}_2), 12, 18, 20.

3. Let F be a field. Prove that two vectors (a, b) and (c, d) in F^2 are linearly dependent if ad-bc = 0 and are linearly independent if $ad - bc \neq 0$ (**Hint.** Try using the contrapositive and §1.5 #9).

4. In this problem, you will prove that \mathbb{F}_p really is a field. From lecture, we know that the outstanding issue was the existence of multiplicative inverses. You can proceed by proving the following multiple lemmas.

Lemma 0.1. Prove that for $a, b \in \mathbb{F}_p$, if ab = 0 then either a = 0 or b = 0.

Hint. You can use the following fact about prime numbers: if a and b are integers not divisible by a prime number p, then ab is not divisible by p (this is a consequence of "prime factorization").

Lemma 0.2. For $a \in \mathbb{F}_p$, consider the map $f_a : \mathbb{F}_p \to \mathbb{F}_p$ defined by $f_a(x) = ax$. Prove that if $a \neq 0$ then f_a is injective.

Finally, use pigeons (and pigeon holes) to conclude with a proof of:

Theorem 0.3. Each nonzero element of \mathbb{F}_p has a multiplicative inverse.