YALE UNIVERSITY DEPARTMENT OF MATHEMATICS Math 225 Linear Algebra and Matrix Theory Spring 2018

Problem Set # 5 (due in class Thursday 22 February)

Notation: Let V be an F-vector space. A linear transformation $T: V \to V$ is often called a **linear operator** on V. For n > 0, we write T^n for T composed with itself n times. For a matrix $A \in \mathsf{M}_{m \times n}(F)$, the **left multiplication transformation** is the linear map $L_A: F^n \to F^m$ defined by $L_A(v) = Av$, where we consider v as a column vector (or rather, as an $n \times 1$ matrix) and Av is the product of A and v.

Reading: FIS 2.2, 2.3

Problems:

1. FIS 2.2 Exercises 1 (If true, then either cite or prove it, if false then provide a counterexample), 2bce, 4, 5acdfg, 8, 9, 11 (Hint: Use §1.6 Corollary 2 part c), 13, 14.

2. FIS 2.3 Exercises 1 (If true, then either cite or prove it, if false then provide a counterexample), 4acd, 9, 11, 12 (For the second question in each part, if true, prove it, and if false then provide a counterexample), 16.

3. Let V be a vector space and $T: V \to V$ a linear operator.

- (1) Prove that $T = T^2$ if and only if there exist subspaces W_0, W_1 of V and an internal direct sum decomposition $V = W_0 \oplus W_1$ such that T restricted to W_0 is the zero map and T restricted to W_1 is the identity map.
- (2) Assume that V is finite dimensional. Prove that $T = T^2$ if and only if there exists an ordered basis β such that $[T]_{\beta}$ is a diagonal matrix whose diagonal entries are either 0 or 1.

Hint. FIS 2.3 exercises 16 and (the hint in) 17 will come in handy.

4. For $\theta \in \mathbb{R}$, consider the matrix

$$T_{\theta} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} \in \mathsf{M}_{2 \times 2}(\mathbb{R})$$

- (1) For any θ , verify that T_{θ} is invertible and that $T_{\theta}^{-1} = T_{-\theta}$.
- (2) Prove that $L_{T_{\theta}} : \mathbb{R}^2 \to \mathbb{R}^2$ is counter-clockwise rotation by angle θ . (Hint: Calculate how the slope of a nonzero vector changes.)