Yale University Department of Mathematics
Math 225 Linear Algebra and Matrix Theory
Spring 2018
Problem Set \# 5 (due in class Thursday 22 February)
Notation: Let V be an F-vector space. A linear transformation $T: V \rightarrow V$ is often called a linear operator on V. For $n>0$, we write T^{n} for T composed with itself n times. For a matrix $A \in \mathrm{M}_{m \times n}(F)$, the left multiplication transformation is the linear map $L_{A}: F^{n} \rightarrow F^{m}$ defined by $L_{A}(v)=A v$, where we consider v as a column vector (or rather, as an $n \times 1$ matrix) and $A v$ is the product of A and v.

Reading: FIS 2.2, 2.3

Problems:

1. FIS 2.2 Exercises 1 (If true, then either cite or prove it, if false then provide a counterexample), 2bce, 4, 5acdfg, 8, 9, 11 (Hint: Use $\S 1.6$ Corollary 2 part c), 13, 14.
2. FIS 2.3 Exercises 1 (If true, then either cite or prove it, if false then provide a counterexample), 4acd, $9,11,12$ (For the second question in each part, if true, prove it, and if false then provide a counterexample), 16.
3. Let V be a vector space and $T: V \rightarrow V$ a linear operator.
(1) Prove that $T=T^{2}$ if and only if there exist subspaces W_{0}, W_{1} of V and an internal direct sum decomposition $V=W_{0} \oplus W_{1}$ such that T restricted to W_{0} is the zero map and T restricted to W_{1} is the identity map.
(2) Assume that V is finite dimensional. Prove that $T=T^{2}$ if and only if there exists an ordered basis β such that $[T]_{\beta}$ is a diagonal matrix whose diagonal entries are either 0 or 1 .
Hint. FIS 2.3 exercises 16 and (the hint in) 17 will come in handy.
4. For $\theta \in \mathbb{R}$, consider the matrix

$$
T_{\theta}=\left(\begin{array}{rr}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right) \in \mathrm{M}_{2 \times 2}(\mathbb{R})
$$

(1) For any θ, verify that T_{θ} is invertible and that $T_{\theta}^{-1}=T_{-\theta}$.
(2) Prove that $L_{T_{\theta}}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is counter-clockwise rotation by angle θ.
(Hint: Calculate how the slope of a nonzero vector changes.)

[^0]E-mail address: asher.auel@yale.edu

[^0]: Yale University, Department of Mathematics, 10 Hillhouse Ave, New Haven, CT 06511

