Yale University Department of Mathematics
Math 225 Linear Algebra and Matrix Theory
Spring 2018
Problem Set \# 9 (due in class Thursday April 12th)
Notation: Let $g(t)$ be a polyomial with coefficients in a field F. Let $T: V \rightarrow V$ be a linear operator on an F-vector space V. Then we define a linear operator $g(T): V \rightarrow V$ as follows. First, for an integer $n \geq 1$, denote by $F^{n}: V \rightarrow V$ the n-fold composition

$$
T^{n}=\underbrace{T \circ T \circ \cdots \circ T}_{n \text { times }}
$$

of T with itself. We define $T^{0}=I_{V}$. Writing a polynomial with coefficients in F as

$$
g(t)=a_{n} t^{n}+a_{n-1} t^{n-1}+\cdots+a_{1} t+a_{0}
$$

then " g applied to the linear operator T " is defined to be

$$
g(T)=a_{n} T^{n}+a_{n-1} T^{n-1}+\cdots+a_{1} T+a_{0} I_{V},
$$

where the scalar multiples and sums are being taking inside the F-vector space $\mathcal{L}(V)$ of linear operators on V.

For an $n \times n$ matrix A with coefficients in F, there is an analogous definition of $g(A)$. Make sure you understand the content of the equality of linear operators $g\left(L_{A}\right)=L_{g(A)}$ on F^{n}.

Let $f(t)$ be the characteristic polynomial of a matrix $A \in \mathrm{M}_{n \times n}(F)$. Assume that $f(t)$ splits (i.e., is a product of linear factors) as

$$
f(t)=\left(t-\lambda_{1}\right)^{m_{1}}\left(t-\lambda_{2}\right)^{m_{2}} \cdots\left(t-\lambda_{r}\right)^{m_{r}}
$$

where $\lambda_{1}, \ldots, \lambda_{r} \in F$ are the distinct eigenvalues of A. We call m_{i} the multiplicity of the eigenvalue λ_{i}.

Reading: FIS 5.1-5.2

Problems:

1. FIS 5.1 Exercises 1 (If true, then either cite or prove it, if false then provide a counterexample), $3 \mathrm{bd}, 4 \mathrm{e}, 8,9,10,11,14,17,22,23$.

Think about, but do not hand in: 2, 15, 16, 19, 20.
2. FIS 5.2 Exercises 9, 10, 11 (Hint: The easiest way to do part (a) is to do FIS 5.1 Exercise 16, which in turn means doing FIS 2.3 Exercise 13).
Think about, but do not hand in: $2,3,4,12$.

[^0]
[^0]: Yale University, Department of Mathematics, 10 Hillhouse Ave, New Haven, CT 06511
 E-mail address: asher.auel@yale.edu

