YALE UNIVERSITY DEPARTMENT OF MATHEMATICS Math 235 Reflection Groups Spring 2016 Final Exam Problems

Directions: The final exam will take place in WLH 113 at 2:00 - 5:30 pm on Sunday, May 8, 2016. You will have 3 hours to complete the exam, which will consist of 5 problems randomly selected from those listed below. Additionally, you will have 30 minutes to check your work. No electronic devices will be allowed. No notes will be allowed. You will need to write your thoughts/proofs in a coherent way to get full credit.

Reading: GB 1.1–5.4.

Problems:

- ♠1 (a) Suppose G is generated by two reflections S_1 and S_2 in \mathbb{R}^2 , such that the angle between the axes of the reflections is 12.5°. What group do they generate? If it is finite, identify this group according to the classification of the finite groups in $O(\mathbb{R}^2)$, and give its order. (b) What is the smallest subgroup of $O(\mathbb{R}^2)$ that contains rotations by 12° and by 45°?
- **♦2** Suppose that dimV is odd. Let $G \subset O(V)$ be a group of orthogonal transformations in V,
- and $H \subset G$ is the subgroup of all rotations in G. Suppose that $H \neq G$.
 - (a) Show that

$$K = H \cup \{-T : T \in G \setminus H\}$$

is a group that consists of rotations. Where did you use that $\dim V$ is odd?

- (b) Can the set $G \setminus H$ have an element of odd order?
- **\$3** Describe geometrically the action of all elements in the groups C_3^4 and H_3^4 . For each of the groups, describe a fundamental region.
- ▲4 List all groups of orthogonal transformations in R³ of order 24. Which of them contain(s)
 (a) an element of order 6, (b) an element of order 12?
- **♦5** Consider the action of S_n on the Euclidean space \mathbb{R}^n by permutations of an orthonormal basis $\{e_1, e_2, \ldots e_n\}$.

(a) Show that S_n acts effectively on the subspace orthogonal to the vector

$$e_1+e_2+\ldots+e_n.$$

- (b) Find the root system corresponding to this Coxeter group. How many roots does it contain?
- **♦6** Describe the subgroup generated by all the reflections in H_3^8] H_3^4 . Is H_3^8] H_3^4 a Coxeter group? If so, describe the root system of the group. Otherwise, describe the root system of the subgroup in H_3^8] H_3^4 generated by the reflections.
- **♦7** Can the matrix

$$\left(\begin{array}{rrrr} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{array}\right)$$

be an element of a finite group generated by reflections in \mathbb{R}^4 , if it is

- (a) written in a basis of simple roots of G,
- (b) written in the standard orthonormal basis in \mathbb{R}^4 ?

Explain your answer.

♠8 Suppose that a Coxeter group in \mathbb{R}^3 has a set of simple roots coinciding with an orthonormal basis $\{e_1, e_2, e_3\}$. What is the group? Find its order and describe its multiplicative structure. Identify this group according to the classification of finite groups of orthogonal transformations in \mathbb{R}^3 .

- $\diamond \mathbf{1}$ Let $\{x_i\}_{i=1}^n$ be a basis in a Euclidean space V and let $\{y_i\}_{i=1}^n$ be the dual basis, so that $\langle x_i, y_j \rangle = \delta_{ij}$. Suppose that A is the matrix with *ij*th entry $\langle x_i, x_j \rangle$ and B the matrix with *ij*th entry $\langle y_i, y_j \rangle$. Prove that $B = A^{-1}$. **Hint.** What is the decomposition of the vector x_i in the basis $\{y_j\}_{i=1}^n$? What is the decomposition of the vector y_i in the basis $\{x_j\}_{i=1}^n$?
- $\Diamond \mathbf{2}$ If V is an n-dimensional Euclidean space and $\{x_1, \ldots, x_{n+2}\}$ are n+2 vectors in V, show that $\langle x_i, x_j \rangle \geq 0$ for some $i \neq j$.
- $\diamond 3$ Find a set of simple roots in \mathbb{R}^3 and identify the Coxeter groups corresponding to the Coxeter graphs

and

Identify each group according to the classification of all finite orthogonal groups in \mathbb{R}^3 . Find the order of each group. Justify your answer.

- ◊4 (a) Explain why the order of an irreducible simply laced (i.e., no markings greater than 3) Coxeter group of rank greater or equal to 3 is divisible by 24.
 - (b) Are the orders of all irreducible non-simply laced Coxeter groups of rank greater or equal to 3 divisible by 48? Explain your answer.
- $\diamond 5$ List all Coxeter groups of rank 5 that have exactly 13 positive roots. Which of them are crystallographic?
- $\mathbf{0}$ (a) For an irreducible Coxeter group of rank $n \geq 8$, what is the maximal number of mutually orthogonal simple roots?
 - (b) Of all irreducible Coxeter groups of rank n = 8, which have fewer than 8 mutually orthogonal roots?
- $\Diamond 7$ List all crystallographic Coxeter groups G of rank 4 such that the action of G on its root system has exactly 3 orbits. Justify your answer.
- $\diamond 8$ Show that the Coxeter group F_4 contains as a subgroup (a) the group of symmetries of a regular tetrahedron, and (b) the group of symmetries of a cube.
- \$1 List all irreducible Coxeter groups of rank ≤ 4 that have an element of order 5.
- ♣2 Consider the Coxeter groups B_n , where $2 \le n \le 5$. Only one of these groups has the property that B_n contains A_n as a subgroup. Which is this group? Prove your answer.
- **\$3** Let G be a Coxeter group of rank ≥ 3 and let $H \subset G$ be a subgroup generated by all but one simple reflections in G. Find all such pairs where G is irreducible, and H is commutative. In each case, identify H as a Coxeter group.
- ♣4 Consider the groups $T, W, W]T, W^*, T^*$.
 - (a) Which of these groups are isomorphic as abstract groups? Are they geometrically equivalent?
 - (b) List all pairs of groups where one is isomorphic to a subgroup of another as abstract groups.

\$5 The candidate for the root system of E_8 is

$$\Gamma = \begin{cases} \pm e_i \pm e_j, & 1 \le i \ne j \le 8, \\ \frac{1}{2} \sum_{i=1}^8, \varepsilon_i e_i, & \varepsilon_i = \pm 1, \quad \prod_{i=1}^8 \varepsilon_i = -1. \end{cases}$$

Show that the simple reflection S_1 corresponding to the simple root $r_1 = \frac{1}{2}(e_1 + e_2 + e_3 - e_4 - e_5 - e_6 - e_7 - e_8)$ preserves the set Γ .

- **46** (a) Give an example of two roots r_1 and r_2 in the root system Δ of the irreducible Coxeter group A_n , $n \geq 2$, such that $r_1 + r_2$ is a root in Δ , as well as an example of two roots r'_1 and r'_2 , such that $r'_1 + r'_2$ is not a root in Δ .
 - (b) Formulate a sufficient condition for the sum of two roots of a Coxeter group to be a root, and prove it.
- **♣7** (a) Give an example of two simple roots r_i, r_j in a root system Δ of a crystallographic Coxeter group such that $r_i + r_j, r_i + 2r_j, r_i + 3r_j$ are roots in Δ.
 - (b) For the root systems of type A_n , $n \ge 2$, what are the possible values of $k \in \mathbb{Z}$ such that $r_i + kr_j$ is a root for two simple roots r_i and r_j ?
- **48** (a) Let Δ be a root system of an irreducible Coxeter group, and Π a set of simple roots. Is there a root $r \in \Delta$ that is orthogonal to all simple roots in Π ?
 - (b) Consider the root system of the Coxeter group A_n , $n \ge 2$. Can you find a root orthogonal to all but one simple roots of A_n ?
- $\heartsuit 1$ Consider the root system of the Coxeter group $B_n, n \ge 2$.
 - (a) Find a root r of length 1 in this root system that is orthogonal to all but one simple root.
 - (b) Use Witt's theorem to find the stabilizer of r in B_n .
 - (c) Use the formula

$$|B_n| = |\operatorname{Orb}(r)| \cdot |\operatorname{Stab}(r)|$$

to find the size of the orbit of r under the action of B_n .

- (d) Identify the vectors in the root system of B_n that belong to the orbit of r.
- $\heartsuit \mathbf{2}$ Consider the root system of the Coxeter group $B_n, n \geq 2$.
 - (a) Find a root r' of length $\sqrt{2}$ in this root system that is orthogonal to all but one simple root.
 - (b) Use Witt's theorem to find the stabilizer of r' in B_n .
 - (c) Use the formula

$$|B_n| = |\operatorname{Orb}(r')| \cdot |\operatorname{Stab}(r')|$$

to find the size of the orbit of r' under the action of B_n .

- (d) Identify the vectors in the root system of B_n that belong to the orbit of r.
- $\heartsuit 3$ Show the following inclusions of subgroups in Coxeter groups:

 $A_n \subset B_{n+1}, \quad D_n \subset B_n, \quad A_7 \subset E_8, \quad D_8 \subset E_8.$

Which of these subgroups are normal? Justify your answer.

- $\heartsuit 4$ Consider the Coxeter group generated by the reflections corresponding to every over node in the Coxeter graph of A_n .
 - (a) Identify this group as a Coxeter group. Is it normal in A_n ?
 - (b) Let n = 3, consider the subgroup of $A_3 \equiv W]T$ generated by the reflections with respect to the first and the last node of the Coxeter graph. What is the order of this subgroup? Describe its action by symmetries of a regular tetrahedron.

- $\heartsuit 5$ Recall that the center of an irreducible Coxeter group is either trivial, or consists of $\{\pm 1\}$. You may assume that for each of the groups I_3, I_4, F_4 it is possible to find a root $r \in \Delta$ such that r is orthogonal to all but one simple root r_i , and that the stabilizer subgroup is $A_1 \times A_1$, I_3 and B_3 , respectively.
 - (a) What is the center of the group $A_1 \times A_1$?
 - (b) What is the center of B_3 ?
 - (c) Use the fact that $-1 \in G$ if and only if $-1 \in \text{Stab}(r)$ to find the centers of each of the groups I_3, I_4, F_4 .
- $\heartsuit 6$ Recall that the center of an irreducible Coxeter group is either trivial, or consists of $\{\pm 1\}$. You may assume that for each of the groups E_6, E_7, E_8 it is possible to find a root $r \in \Delta$ such that r is orthogonal to all but one simple root r_i , and that the stabilizer subgroup in E_6, E_7, E_8 is A_5, D_6 and E_7 , respectively.
 - (a) What are the centers of A_5 and D_6 ?
 - (b) Use the fact that $-1 \in G$ if and only if $-1 \in \text{Stab}(r)$ to find the centers of each of the groups E_6, E_7, E_8 .
- $\heartsuit 7$ For an (irreducible) Coxeter group G acting on a Euclidean space V, a Coxeter element $c \in G$ is a product of all simple reflections in some order. It turns out that Coxeter elements are all conjugate in G, and each one acts as rotation by $2\pi/|c|$ on a unique plane, called the Coxeter plane.
 - (a) Find all *distinct* Coxeter elements in the group A_3 .
 - (b) Find c^2 for each Coxeter element and describe their action as symmetries of a regular tetrahedron.
 - (c) Describe the Coxeter planes of each c in terms of the geometry of the regular tetrahedron.
- $\heartsuit 8$ For an (irreducible) Coxeter group G acting in a Euclidean space V, a Coxeter element $c \in G$ is a product of all simple reflections in any order. Show that the order of a Coxeter element in A_n is (n + 1). Hint. Use the fact that $A_n \simeq S_{n+1}$ and write a Coxeter element as an element of the symmetric group.