YALE UNIVERSITY DEPARTMENT OF MATHEMATICS Math 235 Reflection Groups Spring 2016

Problem Set # 8 (due at the beginning of class on Tuesday 19 April)

Reading: GB 5.1–5.3.

Problems:

1. Show that any linearly independent subset v_1, \ldots, v_k of a Euclidean space V lies on one side of some hyperplane, i.e., that there exists $t \in V$ such that $\langle t, v_i \rangle > 0$ for all $1 \le i \le k$.

Hint. Consider t perpendicular to $v_i - v_1$ for all $2 \le i \le k$.

Use this to verify that for each Coxeter group $G \subset O(V)$ of type A_n , B_n , and D_n , there exists a vector $t \in V$ with respect to which the set of positive roots Δ^+ is as explained in class.

2. Let G be a crystallographic Coxeter group and Π be a base of the root system such that the \mathbb{Z} -linear span of Π is a G-invariant lattice. (We had given length conditions on the elements of Π to ensure this.) This endows the roots of the whole root system Δ with lengths.

- (a) If G is an irreducible crystallographic Coxeter group, show that the orbits of G acting on Δ are the subsets consisting of roots of the same length.
 Hint. If r_i and r_j are simple roots of the same length that are adjacent (in the Coxeter graph), show that S_iS_j(r_i) = r_j.
- (b) What are the orbits of $G = H_2^n$ acting on its root system, when G is not crystallographic? In this case, assume that all roots have length 1 to do the calculation. **Hint.** Consider the cases when n is odd and even separately).

3. Let $G \subset O(V)$ be an irreducible Coxeter group of orthogonal transformations in a Euclidean space V. Suppose that $R: V \to V$ is a linear transformation commuting with G, in the sense that RT = TR for all $T \in G$.

- (a) (Schur's lemma) Show that either R = 0 or R is invertible. **Hint.** Show that the subspace ker $R \subset V$ is G-invariant. Show that the orthogonal complement of a G-invariant subspace is also G-invariant. Show that the root of any reflection in G must lie in a G-invariant subspace.
- (b) Show that each root of G is an eigenvector of R. In particular, show that R is diagonalizable.
- (c) If λ is an eigenvalue of R, show that all eigenvalues of R are equal to λ, i.e., R = λI is a scalar matrix.
 Hint: Show that R has the same eigenvalue for any two adjacent (in the Coxeter graph) simple roots of G, and use the fact that the Coxeter graph of an irreducible group is connected.
- (d) Conclude that the center of G (the set of all elements $T \in G$ that commute with every element of G) is either trivial, or consists of just $\pm I$.
- (e) What is the center of the irreducible Coxeter group of type B_n for $n \ge 2$?