YALE UNIVERSITY DEPARTMENT OF MATHEMATICS Math 235 Reflection Groups Spring 2016

Problem Set # 9 (due at the beginning of class on Thursday 28 April)

Reading: GB 5.

Problems:

- 1. Let $\alpha = \cos(\pi/5)$ and $\beta = \cos(2\pi/5)$.
 - (a) Verify that $4\alpha^2 = 2\alpha + 1$, $4\beta^2 = -2\beta + 1$, and $2\alpha = 2\beta + 1$.
 - (b) Verify that the vectors

$$r_{1} = (2\alpha + 1)\beta e_{1} + \beta e_{2} - 2\alpha\beta e_{3}$$

$$r_{2} = -(2\alpha + 1)\beta e_{1} + \beta e_{2} + 2\alpha\beta e_{3}$$

$$r_{3} = 2\alpha\beta e_{1} - (2\alpha + 1)\beta e_{2} + \beta e_{3}$$

in \mathbb{R}^3 form the base of a root system of type I_3 .

(c) Give an interpretation of the root system Δ of type I_3 in terms of the geometry of the icosahedron. Sketch the simple roots in relationship to the icosahedron. How must the icosahedron be positioned in \mathbb{R}^3 ? Write all the elements of Δ^+ .

Hint. For the last part, you can either use the geometry of the icosahedron or the algorithm presented in class for generating Δ^+ from Π .

(d) Viewing the vectors r_1, r_2, r_3 in \mathbb{R}^4 and further defining

 $r_4 = -2\alpha\beta e_1 - (2\alpha + 1)\beta e_3 + \beta e_4,$

show that $\{r_1, r_2, r_3, r_4\}$ forms the base of a root system of type I_4 .

2. Let $\Gamma = \{a_1, a_2, \ldots a_n\}$ be the Coxeter graph of an irreducible Coxeter group G, and $\{a_1, \ldots a_k\}$ a subset of nodes of Γ , such that $\Gamma_1 = \Gamma \setminus \{a_1, \ldots a_k\}$ is the Coxeter graph of an irreducible Coxeter group G_1 . Then G_1 is a subgroup of G.

- (a) Can G_1 be normal in G?
- (b) List all irreducible Coxeter subgroups of B_4 . Are any of them normal and why?

3. Let $\{e_i\}_{i=1}^8$ be an orthonormal basis in \mathbb{R}^8 . We will construct the 240 roots of E_8 :

$$\Delta = \left\{ \begin{array}{ll} \pm e_i \pm e_j, & i \neq j, \ 1 \le i, j \le 8\\ \frac{1}{2} \sum_{i=1}^8 \varepsilon_i e_i, & \varepsilon_i = \pm 1, \ \prod_{i=1}^8 \varepsilon_i = -1 \end{array} \right\}$$

The simple roots of E_8 are

$$\Pi = \{ r_1 = \frac{1}{2} (e_1 + e_2 + e_3 - e_4 - e_5 - e_6 - e_7 - e_8), r_2 = e_2 - e_1, r_3 = e_3 - e_2, r_4 = e_4 - e_3, r_5 = e_5 - e_4, r_6 = e_6 - e_5, r_7 = e_7 - e_6, r_8 = e_8 - e_7 \}$$

- (a) Show that the roots of E_7 are those roots of E_8 that are orthogonal to $u = \frac{1}{2}(e_1 + e_2 + e_3 + e_4 + e_5 + e_6 + e_7 - e_8)$. Find the number of roots of the group E_7 . **Hint.** First show that the roots $\{r_i\}_{i=1}^7$ can be taken as the simple roots of E_7 .
- (b) Show that the roots of E_6 are those roots of E_7 that are orthogonal to $w = e_8 e_7$. Find the number of roots of the group E_6 .