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2.4 #25 Let V = C∞(−1, 1) be the real vector space of infinitely differentiable real-
valued (also calledsmooth) functionsf : (−1, 1) → R. LetT : V → V be the map defined
by

T (f)(x) = x f ′(x), for all x ∈ (−1, 1).

Note thatT (f) ∈ V since the derivatives and products of smooth functions are again
smooth. This is ageneral warning: the derivative of a (once-)differentiable function
may not be differentiable. An example to keep in mind should be the “signed parabola”
q : R → R defined by

q(x) =

{
x2 x ≥ 0
−x2 x < 0

which is everywhere differentiable and whose derivative is the absolute value,q′(x) = |x|
which is not differentiable atx = 0. Unless he explicitly states otherwise, anytime Apostol
says “differentiable” he really means “smooth”. By the way, while Apostol uses “null
space” and “range”, I’ll employ the more modern usage “kernel” and “image” and I’ll write
ker(T ) and im(T ), respectively. As always, “vector space” will mean here “real vector
space”.

Rant. Before any solutions, I’d like to address a grammatical pet peeve of mine con-
cerning arguments of functions/maps. Iff : (−1, 1) → R is a function, then it takes an
argument, sayx, which is a real number in the interval(−1, 1), and produces an valuef(x),
which is a real number. Now the mapT : V → V takes an argument, sayf which is a
smooth functionf : (−1, 1) → R, and produces a valueT (f) which is another smooth
functionT (f) : (−1, 1) → R. Now writing

T (f) = x f ′(x)

is incorrect, while writing
T (f)(x) = x f ′(x)

is correct sinceT (f) is a function and so takes an argument which is a real number (above
it wasx). It’s all about getting the arguments right. Now here’s a situation you’ll encounter
often. You want to show that two functions, sayf andg, are equal:

two functionsf andg are equal (and writef = g) if and only if they have
the same domain and codomainf : X → Y andg : X → Y , and for every
elementx ∈ X, the equalityf(x) = g(x) is satisfied inY .

Pretty much the only way to show two functions are equal is to test them on elements
in the domain. Be explicit about this. For example, if you want to show that two linear
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transformations, sayDT −TD : V → V andD : V → V are equal, then for everyf ∈ V ,
you need to verify that the equality(DT − TD)(f) = D(f) of functions holds, which in
turn requires you to test on real numbersx ∈ (−1, 1). This might proceed as follows,

(DT − TD)(f)(x) = DT (f)(x)− TD(f)(x)

=
d

dx
(x f ′(x))− x f ′′(x)

= x f ′′(x) + f ′(x)− x f ′′(x) = f ′(x)
= D(f)(x)

which proves that(DT − TD)(f) = D(f) are equal as functions for allf ∈ V , which in
turn proves thatDT − TD = D as linear transformations fromV to V . Get it?

On with the solution. The problem asked to determine ifT is linear and if so, to “de-
scribe” it’s kernel and image. We can actually give quite a good description.

Proposition 1. The mapT : V → V is a linear transformation. The kernel ofT consists
of the one-dimensional vector space

ker(T ) = {f ∈ V : ∃c ∈ R, f(x) = c,∀x ∈ R}

of constant functions, while the image ofT is the infinite dimensional vector space

im(T ) = {f ∈ V : f(0) = 0}

of smooth functions that vanish atx = 0.

Proof. First we’ll verify thatT : V → V is linear. Letf, g ∈ V . Then for allx ∈ (−1, 1),
we have

T (f + g)(x) = x (f + g)′(x) = x (f ′ + g′)(x)
= x f ′(x) + x g′(x)
= T (f)(x) + T (g)(x)

and thusT (f + g) = T (f) + T (g) as functions. Now letf ∈ V andc ∈ c ∈ R. Then for
all x ∈ (−1, 1), we have

T (cf)(x) = x (cf)′(x) = x cf ′(x) = c (x f ′(x))
= (c T (f))(x)

and thusT (cf) = c T (f). We’ve just shown thatT : V → V is a linear transformation.
Now for the kernel. First note that any constant function is in the kernel ofT . Now

we’ll show that the kernel only consists of constant functions. Letf ∈ V and suppose
f ∈ ker(T ). Then

x f ′(x) = 0, ∀x ∈ (−1, 1).

Forx 6= 0 we can divide byx, and thus

f ′(x) = 0, ∀x ∈ (−1, 1), x 6= 0.

but atx = 0, a priorif ′(0) could beanything! But in fact, sincef is infinitely differentiable
(at x = 0), f ′ is then differentiable, hence continuous (atx = 0). Thus for any sequence
(xn) such thatxn ∈ (−1, 1), xn 6= 0, andxn → 0, the sequence(f ′(xn)) converges
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f ′(xn) → f ′(0), sincef ′ is continuous. Butf ′(xn) = 0 for all n, so the zero sequence
tends tof ′(0), i.e.f ′(0) = 0. Thus we can finally say what we always wanted to say,

f ′(x) = 0, ∀x ∈ (−1, 1),

and hence by calculus,f is a constant function on the interval(−1, 1).
Now for the image. First notice that for anyf ∈ V ,

T (f)(0) = 0 · f(0) = 0,

and thusim(T ) ⊂ {f ∈ V : f(0) = 0}. Now we need to prove that everyf ∈ V such that
f(0) = 0 is equal toT (g) for someg ∈ V , i.e.f(x) = x g′(x). So letf ∈ V and assume
thatf(0) = 0. The idea is to take an antiderivative of “1

xf(x)”. We first need to know that
this makes sense, and then that it exists inV . Define a functionF : (−1, 1) → R by

F (x) =

{
1
xf(x) x 6= 0
f ′(0) x = 0

.

First we’ll claim thatF is continuous. It’s certainly continuous (the product of two contin-
uous functions) forx 6= 0, the problem is atx = 0. But now note that

lim
x→0

F (x) = lim
x→0

f(x)
x

= lim
x→0

f(x)− f(0)
x− 0

= f ′(0) = F (0),

by the definition of the derivative off atx = 0. ThusF is continuous atx = 0. Also note
thatxF (x) = f(x) for all x ∈ (−1, 1), including atx = 0. Finally, defineg : (−1, 1) → R
to be an antiderivative ofF ,

g(x) =
∫ x

t=0
F (t) dt.

Now we need to show thatg ∈ V , i.e. thatg is smooth. Once we’ve shown that, then we can
verify that in factT (g) = f . And we’ll have shown thatim(T ) = {f ∈ V : f(0) = 0}.

Now about showingg is smooth. Since by the fundamental theorem of calculus,Dg =
F , we are reduced to showing thatF is smooth. It’s certainly smooth (a product of smooth
functions) at allx 6= 0, so the problem is atx = 0. This is a bit tricky. A nice way is to use
the Taylor expansion off aroundx = 0, noting that sincef(0) = 0, there is no constant
term, and you can “divide byx”. Staring at the Taylor expansion, you’ll notice that there’s
a nice formula,

F (n)(0) =
1

n + 1
f (n+1)(0), for all n ≥ 0.

for the higher derivatives ofF at x = 0. Another way, without using a Taylor expansion,
is to actually compute, via the limit definition, the higher derivatives ofF atx = 0, and to
prove (perhaps with the help of l’Ĥopital’s rule and induction) that they exist and match the
above formula. For example, to compute the first derivative,

F ′(0) = lim
x→0

1
xf(x)− f ′(0)

x− 0

= lim
x→0

x f ′(x)− f(x)
x2

= lim
x→0

x f ′′(x) + f ′(x)− f ′(x)
2x

=
1
2
f ′′(x)
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using l’Hôpital’s rule twice. Thus we find that the first derivativeF ′ : (−1, 1) → R exists
and is defined by

F ′(x) =

{
x f ′(x)−f(x)

x2 x 6= 0
1
2f ′′(0) x = 0

.

Now we can calculateF ′′(0) in the same way. Setting this up for a proof by induction
should be doable, and perhaps fun!

Finally, note thatim(T ) = {f ∈ V : f(0) = 0} contains all polynomialsxn for
n ≥ 1, since they all vanish atx = 0. These certainly span an infinite dimensional subspace
of im(T ), which must thus be infinite dimensional itself. Alternatively, we could appeal to
exercise 2.4 #30.

As you might have noticed, there are quite a lot of interesting aspects to this problem
that unfortunatelynobody in the class touched on.

2.4 #30 For the next proposition, I’ll provide two proofs. One will be a quick proof by
contradiction, and the second will be an alternate proof of the contrapositive statement.
More people employed a variant of the first proof.

Proposition 2. Let T : V → W be a linear transformation. Then ifV is infinite dimen-
sional thenker(T ) or im(T ) is infinite dimensional (or both).

Proof (by contradiction).LetV be an infinite dimensional vector space. To get a contradic-
tion, assume that bothker(T ) andim(T ) are finite dimensional, say of respective dimen-
sionsk andr. Sinceker(T ) ⊂ V is a finite dimensional subspace, lete1, . . . , ek ∈ V be
a basis forker(T ). Choose an integern > r and, sinceV is assumed infinite dimensional,
we can keep choosing vectorsek+1, . . . , ek+n ∈ V such thate1, . . . , ek+n are linearly in-
dependent. Consider then vectorsT (ek+1), . . . , T (ek+n) ∈ im(T ). Sincen > r and the
dimension ofim(T ) is assumed to ber, these must be linearly dependent, i.e. there exist
scalarsck+1, . . . , ck+n ∈ R not all zero such that

0 = ck+1T (ek+1) + · · ·+ ck+nT (ek+n) = T (ck+1ek+1 + · · ·+ ck+nek+n)

by the linearity ofT . Thus we see that the vectorck+1ek+1 + · · · + ck+nek+n is in the
kernel ofT , and thus has a unique representationv = c1e1 + · · · + ckek with respect the
the chosen basis ofker(T ). Thus we have the equation,

c1e1 + · · ·+ ckek = ck+1ek+1 + · · ·+ ck+nek+n

and hence we’ve found a linear dependence betweene1, . . . , ek+n, which is a contradiction
to the fact that we could choose them linearly independent. So we’re done.

Proof (of contrapositive).The contrapositive of the proposition is:

Let T : V → W be a linear transformation. Then ifker(T ) and im(T ) are
finite dimensional, then so isV .

So assume thatker(T ) andim(T ) are both finite dimensional, say of respective dimensions
k andr. Choose a basise1, . . . , ek ∈ V of ker(T ). Choose a basisf1, . . . , fr ∈ im(T ) of
im(T ), and choose a elementsek+1, . . . , ek+r ∈ V such that

T (ek+i) = fi, for all i = 1, . . . , r.
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We can do this by the definition ofim(T ). First we claim thate1, . . . , ek+r are linearly
independent. To that end, suppose that for some scalarsc1, . . . , ck+r ∈ R we have,

c1e1 + · · ·+ ck+rek+r = 0.

We want to show that they must all be zero. By the linearity ofT , we see that

0 = T (c1e1 + · · ·+ ck+rek+r)
= c1T (e1) + · · ·+ ck+rT (ek+r)
= ck+1f1 + · · ·+ ck+rfr

sinceT (ei) = 0 for i = 1, . . . , k. Thusck+1 = · · · = ck+r = 0 sincef1, . . . , fr ∈ im(T )
are linearly independent. But now,

0 = c1e1 + · · ·+ ck+rek+r = c1e1 + · · ·+ ckek,

and thusc1 = · · · = ck = 0 as well, sincee1, . . . , ek ∈ V are linearly independent. Thus
c1 = · · · = ck+r = 0. Thus we’re proved thate1, . . . , ek+r ∈ V are linearly independent.

Now we want to prove that this forms a basis, i.e. thate1, . . . , ek+r is a maximal linearly
independent set. To that end, choose anyv ∈ V . ThenT (v) ∈ im(T ), so we can uniquely
express

T (v) = ck+1f1 + · · ·+ ck+rfr = ck+1T (ek+1) + · · ·+ ck+rT (ek+r),

in terms of our chosen basis ofim(T ). Now note that

0 = T (v)− ck+1T (ek+1) + · · ·+ ck+rT (ek+r) = T (v − ck+1ek+1 + · · ·+ ck+rek+r)

and so the elementv− ck+1ek+1 + · · ·+ ck+rek+r is in the kernel ofT , so can be uniquely
expressed as

v − ck+1ek+1 + · · ·+ ck+rek+r = c1e1 + · · ·+ ckek.

Finally we see thatv ∈ V is dependent one1, . . . , ek+r. Thus we’ve found a maximal
linearly independent set, i.e. a basis, so thatV is finite dimensional, with dimensionk +
r, just as it should be. Incidentally, we’ve given an alternate proof of the rank-nullity
theorem.

Notice that the two proofs differ in very specific ways, though have much in common.
In general, it is more “tasteful” to prove things by proving their contrapositive, though it is
often “easier” to prove things by contradiction. So my rule of thumb is that if I can get by
with the former, I’ll avoid the later.
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