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3. There is an injective homomorphism Sn → A2n sending each σ permutation of {1, . . . , n}
to the product σσ′, where σ′ is the same permutation as σ, except it acts on {n + 1, . . . , 2n}.
The product of two disjoint permutations of the same length is always even. Checking that this
defines an injective homomorphism is straightforward. Then, given any group G of order n,
the left regular representation yields an injective homomorphism G → Sn, which we can then
compose with Sn → A2n.

4. By the classification theorem for finite abelian groups, the number of isomorphism classes
only depends on the number of times a given prime number divides the order. So there are three
cases to consider.

Case 1, p = q = r. Then we are considering groups of order p6. Elementary divisors are
in bijection with partitions of 6. There are eleven of them: (6), (5, 1), (4, 2), (4, 1, 1), (3, 3),
(3, 2, 1), (3, 1, 1, 1), (2, 2, 2), (2, 2, 1, 1), (2, 1, 1, 1, 1), (1, 1, 1, 1, 1, 1). So there are 11 isomorphism
classes of abelian group of order p6.

Case 2, p = r, q 6= p. Then we are considering groups of order p4q2. Elementary divisors for
the p-part are in bijection with partitions of 4, of which there are five: (4), (3, 1), (2, 2), (2, 1, 1),
(1, 1, 1, 1). Elementary divisors for the q-part are in bijection with partitions of 2, of which there
are two: (2), (1, 1). So there are 10 = 5 · 2 isomorphism classes of abelian group of order p4q2.

Case 3, p, q, r different. Then we are considering groups of order p2q2r2. There are 8 = 2 ·2 ·2
isomorphism classes of abelian group of order p2q2r2.

5. Let G be a group of order 245 = 5 · 72. Let F be a Sylow 5−subgroup and S be a Sylow
7−subgroup. As n5 ≡ 1 (mod 5) and n5|72, we see that n5 = 1, and thus F C6 G. Also
S C6 G since its index is the smallest prime dividing the order of G. By Lagrange’s theorem,
F ⊂ S = {1}, since they have relatively prime orders. Hence by the recognition theorem for
direct products, G ∼= F × S. Now F ∼= Z5, since its order is prime. We previously proved in
class that a group of order p2 is abelian, hence S is either isomorphic to Z49 or Z7 × Z7. In
conclusion, there are two possible isomorphism classes of groups of order 245: Z245

∼= Z5 × Z49

or Z35 × Z7
∼= Z5 × Z7 × Z7.

6. By Cauchy’s theorem, G has an element of order 7, which generates a subgroup K ⊂ G of
order 7. By Lagrange’s theorem, K ∩H = {1}, since their orders are relatively prime. Hence by
the recognition theorem for semi-direct products, G ∼= H oK with respect to a homomorphism
ϕ : K → Aut(H). As we learned in one of the problem sets, the automorphism group of S6
has order 2 · 6!, with the subgroup of inner automorphisms isomorphic to S6. By Lagrange’s
theorem, Aut(H) has no element of order 7, hence ϕ is the trivial homomorphism. We conclude
that G ∼= H ×K ∼= S6 × Z7.

We know that the abelianization of S7 is isomorphic to Z2. Since abelianization commutes
with direct products, the abelianization of S6 × Z7 is isomorphic to Z2 × Z7, hence S7 is not
isomorphic to S6 × Z7, and hence cannot contain any normal subgroup isomorphic to S6.



7. By the problem sets, if f(x) ∈ Fp[x] is an irreducible polynomial of degree r, then Fp[x]/(f(x))
is a field of order pr. Hence we must find irreducible polynomials of degree 3 over F2, F3, and
F5. By the book, we know that a polynomial of degree 3 is irreducible over a field if and only if
it has no roots in that field (remember that this is false for polynomials of degree 4 and higher).
It’s easy to check (by plugging in the elements) that the polynomial x3 + x + 1 is irreducible
over F2 and F5 while the polynomial x3 + x2 + x− 1 is irreducible over F3.

By the problem sets, we know that if Fpr is a field of order pr, then F×pr is a cyclic group
of order pr − 1. In particular, by the structure theory of subgroups of cyclic groups, for every
divisor of pr − 1 there is an element of that order. So F×8 has elements of order 1 and 7; F×27 has
elements of order 1, 2, 13, and 26; and F×125 has elements of order 1, 2, 4, 31, 62, and 124.

8. To prove that R is a subring, we need to verify that it is closed under addition, which is
obvious, and under multiplication:(

a b
b a

)(
c d
d c

)
=

(
ac+ bd ad+ bc
bc+ ad bd+ ac

)
In fact, R also contains the identity of M2(R), and the commutativity is apparent from the
formula for the product. We can see from the product:(

1 1
1 1

)(
1 −1
−1 1

)
=

(
0 0
0 0

)
that R is not an integral domain. Calculating the square of an element:(

a b
b a

)2
=

(
a2 + b2 2ab

2ab a2 + b2

)
we see that to find an idempotent, we must simultaneously solve the equations a2 + b2 = a and
2ab = b in R. If b = 0, then the second is solved, and the first yields a = 0 of 1. If b 6= 0, then
(since R is a field) we can cancel b from the second equation to get a = 1/2, from which the first
equation yields b = ±1/2. Hence the idempotents are:(

0 0
0 0

)
,

(
1 0
0 1

)
,

(
1/2 1/2
1/2 1/2

)
,

(
1/2 −1/2
−1/2 1/2

)
To study nilpotent elements, we need to compute powers, and it is most natural to consider
eigenvalues. The characteristic polynomial of an element of R is x2 − 2ax+ a2 − b2 = (x− (a−
b))(x− (a+ b)). So the eigenvalues are a± b. Any nilpotent matrix must have all its eigenvalues
nilpotent (indeed, if λ is an eigenvalue of A then λk is an eigenvalue to Ak, and the zero matrix
has all zero eigenvalues), and since we are over a field, all eigenvalues must zero. However, the
only way for both a± b = 0, is that a = b = 0, so there are no nonzero nilpotent elements.

Now we consider the map ϕ : R→ R. It is clearly additive; to check that it is multiplicative,
we use the above formula for the product, verifying that (a− b)(c− d) = (ac+ bd)− (ad+ bc).
It also preserves identities, so ϕ is a homomorphism of rings with 1. The kernel consists of all
matrices of the form: (

a a
a a

)
The map ker(ϕ) → R taking such a matrix to a is clearly a group homomorphism between
additive groups (it is not a ring homomorphism, however). Considering scalar multiples of the
identity, we see that ϕ is surjective, hence by the first isomorphism theorem, R/ ker(ϕ) ∼= R.
In particular, ker(ϕ) is a maximal ideal, hence by a theorem from class (since we are in a
commutative ring), is also a prime ideal.



9. As R is a subring of the Q-quaternions, which is a division ring, we know that a quaternion
x = a+ bi+ cj + dk is invertible if and only if N(x) = xx = a2 + b2 + c2 + d2 is a unit in Z, and
then the inverse is x/N(x). Since Z× = {±1}, we are left to solve a2 + b2 + c2 + d2 = ±1. Since
a sum of squares can only be positive, only a2 + b2 + c2 + d2 = 1 is possible, and then the only
solutions are (a, b, c, d) of the form (±1, 0, 0, 0), (0,±1, 0, 0), (0, 0,±1, 0), or (0, 0, 0,±1). Hence
R× = {±1,±i,±j,±k} is isomorphic to the quaternion group of order 8.

10. By a problem set exercise, a unit in R[x] must have unit constant term and all other
coefficients nilpotent. In Z/4Z, the only nonzero nilpotent is 2. Hence for each n ≥ 0, the
element 1 + 2xn ∈ Z/4Z[x] will be a unit (in fact, it’s its own inverse).

11. As discussed in class, a Z−module is the same thing as an abelian group, and a Z−module
homomorphism is the same thing as a homomorphism between abelian groups. Since Z/36Z is
a cyclic group, any group homomorphism is determined by where it sends 1, and the image of 1
must be an element of order dividing 36. Since gcd(36, 48) = 12, a homomorphism ϕ : Z/36Z→
Z/48Z must send 1 to an element of order dividing 12, which consists of the subgroup of Z/48Z
generated by 48/12 = 4. It is straightforward to check that if G = 〈g〉 is a cyclic group and
H is any abelian groups and ϕ1, ϕ2 ∈ HomZ(G,H) satisfy ϕi(g) = ai ∈ H, then the element
ϕ1 + ϕ2 ∈ HomZ(G,H) satisfies (ϕ1 + ϕ2)(g) = a1 + a2, and thus we have that HomZ(G,H)
is isomorphic to the subgroup {ϕ(g) |ϕ ∈ HomZ(G,H)} ⊂ H. Hence HomZ(Z/36Z,Z/48Z) is
isomorphic to the subgroup of Z/48Z generated by 4, which is a cyclic group of order 12.

Similarly, as additive groups, HomZ(Z/36Z,Z/36Z) and HomZ(Z/48Z,Z/48Z) are cyclic of
order 36 and 48, respectively. In fact, it is similarly straightforward to prove that if G = 〈g〉
is a cyclic group then the map HomZ(G,G) → G defined by ϕ 7→ ϕ(g) is multiplicative. In
conclusion, this defines a ring isomorphism HomZ(G,G) ∼= G for any cyclic group G.

12.

• We discussed how Gauss proved that Z[i] is a Euclidean domain for the standard norm.
This is not isomorphic to either Z (since it has an element of multiplicative order 4)
nor to F [x] for any field F (any such F would have to have characteristic zero, which is
impossible, since for example 2 = 1 + 1 ∈ Z[i] is not invertible but it would be in F [x]).

• A Euclidean domain is a PID, as proved in class, so the above example works.

• Technically speaking, a Euclidean domain must be an integral domain, so there are plenty
of quotients of Z (e.g., Z/4Z) or F [x] (e.g., F [x]/(x2)) that are not integral domains.
If we ask whether any quotient of Z or F [x], which is an integral domain, is Euclidean,
then the answer is “yes.” Indeed, any quotient of Z is either Z itself or is Z/nZ, which
is a domain only when it is a field (remember that finite integral domains are fields).
Similarly, any quotient of F [x] is either F [x] itself, or is F [x]/(f(x)), which, by the
Chinese remainder theorem and the fact that F [x] is a UFD, is a domain if and only
if f(x) is irreducible if and only if F [x]/(f(x)) is a field. Recall that a field is always
Euclidean, with respect to the zero norm.

• By the lattice isomorphism theorem, any quotient of a PID is a PID.

• In class, it was stated that there are only finitely many imaginary quadratic integer rings
that are Euclidean, but many more that are PID. For example, Z[(1 +

√
−19)/2] is one.

• As discussed in class, F [x, y] is a UFD but not a PID.

• Impossible, any Euclidean domain is a PID.



13. The Chinese remainder theorem tells us that the component-wise reduction map

Z/q1 · · · qrZ ∼= Z/q1Z× · · · × Z/qrZ
is an isomorphism of rings as long as q1, . . . , qr are pair-wise relatively prime.

For the first part, we can actually argue directly by hand. If a ∈ Z is congruent to 1 modulo
2, 3, and 5, then a− 1 is divisible by 2, 3, and 5, hence a− 1 is divisible by lcm(2, 3, 5) = 30, so
that a ≡ 1 (mod 30). The converse is true as well, if a ≡ 1 (mod 30), then a is congruent to 1
modulo 2, 3, and 5.

For the second part, it is harder to argue by hand. So we use the Chinese remainder theorem.
We are looking for the intersection of cosets (1 + 2Z) ∩ (2 + 3Z) ∩ (3 + 5Z) ⊂ Z, which is the
same as set of integers that map to (1 + 2Z, 2 + 3Z, 3 + 5Z) under the component-wise reduction
homomorphism Z→ Z/2Z×Z/3Z×Z/5Z. By the Chinese remainder theorem, this correspond
to an element (a coset) in Z/30Z. Which one? We are reduced to finding a single integer with
the required properties, e.g., 23 works. So the set coincides with the set of integers congruent
to 23 modulo 30.

14. Letting e1, e2, e3 be the standard basis for R3, then S3 acts on R3 by σ(a1e1 +a2e2 +a3e3) =
a1eσ(1) + a2eσ(2) + a3eσ(3). Then the R[S3]−module structure on R3 can be written as

(
∑
σ∈S3

bσeσ)(v) =
∑
σ∈S3

bσσ(v) for v ∈ R3.

Since R[S3] is an R-algebra, restricting the R[S3]−action to an R−action shows that any
R[S3]−module is, in particular, an R−module. Hence any R[S3]−submodule N ⊂ R3 is, in par-
ticular, and R−subspace. Furthermore, an R−subspace N ⊂ R3 is an R[S3]−submodule when N
is invariant for the action of S3 on R3. For example, the subspace of R3 generated by e1 +e2 +e3
is invariant under S3, hence defines a 1-dimensional (hence nontrivial) R[S3]−submodule of R3.

This is not necessary but if you are interested in finding a 2-dimensional submodule, you can
show that that since the S3 action preserves the standard inner product on R3, the orthogonal
complement to a S3−invariant subspace is also S3−invariant.
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