YALE UNIVERSITY DEPARTMENT OF MATHEMATICS Math 350 Introduction to Abstract Algebra Fall 2015

Problem Set # 1 (due at the beginning of class on Friday 18 September)

Notation: If S is a set of elements (numbers, rabbits, ...) then the notation " $s \in S$ " means "s is an element of the set S." If T is another set, then the notation " $T \subseteq S$ " means "every element of T is an element of S" or "T is a **subset** of S." We can specify a subset $T \subset S$ by conditions on the elements of S, e.g., if S is the set of rectangles, then the subset of squares is $\{s \in S \mid \text{all sides of } s \text{ have the same length}\}$. If S and T are sets, then a **function** or **map** $f: S \to T$ from S to T is the a rule that associates to each element $s \in S$, an element $f(s) \in T$.

Reading: DF 0.1–0.3, 1.1–1.6.

Problems:

DF 0.1 Exercises 5, 7.
 DF 0.2 Exercises 3, 7, 10, 11.
 DF 0.3 Exercises 4, 7, 8, 10, 13.

2. DF 1.1 Exercises 9, 14, 20, 22, 25, 31.

3. Let G be a group and $a_1, a_2, \ldots, a_r \in G$. We say that a_1, \ldots, a_r pairwise commute if a_i commutes with a_j for all i and j. We say that a_1, \ldots, a_r are rank independent if $a_1^{e_1} \cdots a_r^{e_r} = 1$ implies that e_i is a multiple of $|a_i|$ for all i. The aim of the problem is to prove:

Proposition. Let G be a group and $a_1, a_2, \ldots, a_r \in G$ be pairwise commuting rank independent elements of finite order. Then $|a_1 \cdots a_r| = \text{lcm}(|a_1|, \ldots, |a_r|)$.

- (a) (DF 1.1 Exercise 24) If a and b are commuting elements, prove that $(ab)^n = a^n b^n$ for all $n \in \mathbb{Z}$. Hint: Do induction on n.
- (b) If a_1, \ldots, a_r are pairwise commuting elements, prove that $(a_1 \cdots a_r)^n = a_1^n \cdots a_r^n$. Hint: Do induction on r.
- (c) If a_1, \ldots, a_r are pairwise commuting elements of finite order, prove that $|a_1 \cdots a_r|$ divides $lcm(|a_1|, \ldots, |a_r|)$. Hint: Raise $a_1 \cdots a_r$ to the power $lcm(|a_1|, \ldots, |a_r|)$.
- (d) Prove the proposition. Hint: Do induction on r; for the base case r = 1 there is not much to say, and then you should realize that (after a bit of juggling with least common multipliers) the induction step just boils down to the case r = 2.
- (e) Show that disjoint cycles in S_n are rank independent, then deduce DF 1.3 Exercise 15.
- 4. DF 1.2 Exercises 2, 3, 7.
 DF 1.3 Exercises 1 (also compute the order of each permutation), 5, 10, 11, 13.
 DF 1.4 Exercises 2, 4, 5.
- 5. DF 1.6 Exercises 2, 3, 4, 6, 7, 9, 14, 16, 17 (prove that it's always a bijection), 18, 23, 24, 25. DF 1.7 Exercises 5, 17 (this gives another proof of 1.1 Exercise 22), 18, 19.

6. Prove that if G is a group and $a, b \in G$ satisfy ab = e then a is the inverse of b and b is the inverse of a, i.e., a left (or right) inverse is actually an inverse in a group. Prove that if ga = a for all $a \in G$ or that ag = a for all $a \in G$, then g is the identity, i.e., a left (or right) identity is actually an identity in a group.

Yale University, Department of Mathematics, 10 Hillhouse Ave, New Haven, CT 06511 E-mail address: asher.auel@yale.edu