Yale University Department of Mathematics

Math 350 Introduction to Abstract Algebra

Fall 2015
Problem Set \# 1 (due at the beginning of class on Friday 18 September)
Notation: If S is a set of elements (numbers, rabbits, ...) then the notation " $s \in S$ " means " s is an element of the set S." If T is another set, then the notation " $T \subseteq S$ " means "every element of T is an element of S " or " T is a subset of S." We can specify a subset $T \subset S$ by conditions on the elements of S, e.g., if S is the set of rectangles, then the subset of squares is $\{s \in S \mid$ all sides of s have the same length $\}$. If S and T are sets, then a function or map $f: S \rightarrow T$ from S to T is the a rule that associates to each element $s \in S$, an element $f(s) \in T$.

Reading: DF 0.1-0.3, 1.1-1.6.

Problems:

1. DF 0.1 Exercises 5, 7.

DF 0.2 Exercises 3, 7, 10, 11.
DF 0.3 Exercises 4, 7, 8, 10, 13.
2. DF 1.1 Exercises 9, 14, 20, 22, 25, 31.
3. Let G be a group and $a_{1}, a_{2}, \ldots, a_{r} \in G$. We say that a_{1}, \ldots, a_{r} pairwise commute if a_{i} commutes with a_{j} for all i and j. We say that a_{1}, \ldots, a_{r} are rank independent if $a_{1}^{e_{1}} \cdots a_{r}^{e_{r}}=1$ implies that e_{i} is a multiple of $\left|a_{i}\right|$ for all i. The aim of the problem is to prove:

Proposition. Let G be a group and $a_{1}, a_{2}, \ldots, a_{r} \in G$ be pairwise commuting rank independent elements of finite order. Then $\left|a_{1} \cdots a_{r}\right|=\operatorname{lcm}\left(\left|a_{1}\right|, \ldots,\left|a_{r}\right|\right)$.
(a) (DF 1.1 Exercise 24) If a and b are commuting elements, prove that $(a b)^{n}=a^{n} b^{n}$ for all $n \in \mathbb{Z}$. Hint: Do induction on n.
(b) If a_{1}, \ldots, a_{r} are pairwise commuting elements, prove that $\left(a_{1} \cdots a_{r}\right)^{n}=a_{1}^{n} \cdots a_{r}^{n}$. Hint: Do induction on r.
(c) If a_{1}, \ldots, a_{r} are pairwise commuting elements of finite order, prove that $\left|a_{1} \cdots a_{r}\right|$ divides $\operatorname{lcm}\left(\left|a_{1}\right|, \ldots,\left|a_{r}\right|\right)$. Hint: Raise $a_{1} \cdots a_{r}$ to the power $\operatorname{lcm}\left(\left|a_{1}\right|, \ldots,\left|a_{r}\right|\right)$.
(d) Prove the proposition. Hint: Do induction on r; for the base case $r=1$ there is not much to say, and then you should realize that (after a bit of juggling with least common multipliers) the induction step just boils down to the case $r=2$.
(e) Show that disjoint cycles in S_{n} are rank independent, then deduce DF 1.3 Exercise 15.
4. DF 1.2 Exercises 2, 3, 7.

DF 1.3 Exercises 1 (also compute the order of each permutation), 5, 10, 11, 13.
DF 1.4 Exercises 2, 4, 5.
5. DF 1.6 Exercises $2,3,4,6,7,9,14,16,17$ (prove that it's always a bijection), 18, 23, 24, 25. DF 1.7 Exercises 5, 17 (this gives another proof of 1.1 Exercise 22), 18, 19.
6. Prove that if G is a group and $a, b \in G$ satisfy $a b=e$ then a is the inverse of b and b is the inverse of a, i.e., a left (or right) inverse is actually an inverse in a group. Prove that if $g a=a$ for all $a \in G$ or that $a g=a$ for all $a \in G$, then g is the identity, i.e., a left (or right) identity is actually an identity in a group.

