Yale University Department of Mathematics

Math 350 Introduction to Abstract Algebra

Fall 2015
Problem Set \# 10 (due at the beginning of class on Friday 11 December)
Reading: DF 7.4-7.6, 8.1-8.3, 9.1-9.2.
Problems: (Starred* problems are strongly recommended!)

1. DF 7.4 Exercises $37^{*}, 38,39^{*}$.
2. DF 7.5 Exercises 3,5 .
3. DF 7.6 Exercise 5a.
4. DF 8.1 Exercises $3,6^{*}, 12^{*}$.
5. DF 8.2 Exercises 3, 5.
6. DF 8.3 Exercise 8.
7. DF 9.1 Exercises $6,13^{*}$ (Hint. For any commutative ring R with 1 and any $g \in R$, prove that $R[x] /(x-g) \cong R$, then use this to prove that $y^{2}-x$ is prime in $\left.F[x, y]\right)$.
8. DF 9.2 Exercises $1,2^{*}, 3^{*}$ (this provides a way to build more finite fields).
9. Finite field with p^{2} elements. Before, we constructed $\mathbb{F}_{4}=\mathbb{F}_{2}[x] /\left(x^{2}+x+1\right)$. In an analogous way, construct $\mathbb{F}_{9}, \mathbb{F}_{25}$, and \mathbb{F}_{49}.
10. Parabola*. Let F be a field.
(a) Prove that for any $a_{1}, \ldots, a_{n} \in F$, the ideal $\left(x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right) \subset F\left[x_{1}, \ldots, x_{n}\right]$ is maximal.
Hint. Consider evaluating a polynomial at $\left(a_{1}, \ldots, a_{n}\right)$. Then you can proceed as follows: by considering the automorphism $f\left(x_{1}, \ldots, x_{n}\right) \mapsto f\left(x_{1}+a_{1}, \ldots, x_{n}+a_{n}\right)$ of $F\left[x_{1}, \ldots, x_{n}\right]$ you can reduce to the case where the ideal is $\left(x_{1}, \ldots, x_{n}\right)$, which is easier.
(b) Prove that every maximal ideal $M \subset F\left[x_{1}, \ldots, x_{n}\right]$, such that there is an F-algebra isomorphism $F\left[x_{1}, \ldots, x_{n}\right] / M \cong F$, is of the form $M=\left(x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right)$ for some $a_{1}, \ldots, a_{n} \in F$.
Hint. Given a surjective ring homomorphism $F\left[x_{1}, \ldots, x_{n}\right] \rightarrow F$ with kernel M, consider the images of x_{i}.
(c) Show that $\left(x^{2}+1, y\right)$ is a maximal ideal in $\mathbb{R}[x, y]$ and compute its quotient. Note that this maximal ideal is not in the form as in the previous parts.
(d) Consider the ideal $I=\left(y-x^{2}\right)$ in $\mathbb{R}[x, y]$. Show that the maximal ideals $M \subset \mathbb{R}[x, y]$ with $\mathbb{R}[x, y] / M \cong \mathbb{R}$ and $I \subset M$ are exactly those of the form $M=(x-a, y-b)$ for $(a, b) \in \mathbb{R}^{2}$ on the parabola $y=x^{2}$. Think about how you might characterize the maximal ideals $M \subset \mathbb{R}[x, y]$ containing I such that $\mathbb{R}[x, y] / M \cong \mathbb{C}$.
