Yale University Department of Mathematics

## Math 350 Introduction to Abstract Algebra

Fall 2015
Problem Set \# 2 (due at the beginning of class on Friday 25 September)
Reading: DF 2.1-2.5.

## Problems:

1. DF 2.1 Exercises 2, 6, 7, 8, 14, 15.
2. DF 2.2 Exercises 4, 7, 12, 14.
3. DF 2.3 Exercises 5, 9, 10, 12, 20, 21, 22, 23 (Hint: What does 22 tell you about the order of 5 in $\left(\mathbb{Z} / 2^{n} \mathbb{Z}\right)$ ?), $25,26$.
4. DF 2.4 Exercises 3, 6, 7, 8, 11 (Hint: What are the orders of elements in $S_{4}$ ?), 13, 14, 15, 16, 19.
5. Let $\mathbb{F}_{4}=\{0,1, x, y\}$. Prove that there are operations + and $\cdot$ on $\mathbb{F}_{4}$, such that $1+x=y$ and $x^{2}=y$, making $\mathbb{F}_{4}$ into a field. Note that the four elements of $\mathbb{F}_{4}$ are distinct! Essentially the problem is to fill out the addition and multiplication tables:

| + | 0 | 1 | $x$ | $y$ |
| :--- | :--- | :--- | :--- | :--- |
| 0 |  |  |  |  |
| 1 |  |  |  |  |
| $x$ |  |  |  |  |
| $y$ |  |  |  |  |


| $\cdot$ | 0 | 1 | $x$ | $y$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 |  |  |  |  |
| 1 |  |  |  |  |
| $x$ |  |  |  |  |
| $y$ |  |  |  |  |

You already know certain rows and columns by properties of 0 and 1 in a field!

