YALE UNIVERSITY DEPARTMENT OF MATHEMATICS Math 350 Introduction to Abstract Algebra Fall 2015

Problem Set # 4 (due at the beginning of class on Friday 9 October)

Notation: A group G is solvable if there exists a chain of subgroups

 $\{1\} = G_0 \triangleleft G_1 \triangleleft \cdots \triangleleft G_{r-1} \triangleleft G_r = G$

with each G_{i+1}/G_i abelian for all $0 \le i \le r-1$.

Reading: DF 3.1–3.5.

Problems: (Starred* problems are strongly recommended!)

- 1. DF 3.2 Exercises 5, 17.
- **2.** DF 3.3 Exercises 3, 6*, 8, 9*.
- **3.** DF 3.4 Exercises 2, 7, 8*.
- 4. DF 3.5 Exercises 3*, 4, 6, 10, 13*, 14, 15, 17*.

5. More classification^{*}. Prove that if G is an abelian group of order pq, where p an q are distinct primes numbers, then G is cyclic. (Hint: Use Cauchy's theorem for abelian groups.)

- 6. Some isomorphisms*.
 - (a) For any field F, prove that the center of $\operatorname{GL}_2(F)$ consists of F^{\times} multiples of the identity matrix. What is the center of $\operatorname{SL}_2(F)$? We denote by $\operatorname{PGL}_2(F) = \operatorname{GL}_2(F)/Z(\operatorname{GL}_2(F))$ and $\operatorname{PSL}_2(F) = \operatorname{SL}_2(F)/Z(\operatorname{SL}_2(F))$.
 - (b) Prove that $\operatorname{GL}_2(F)$ acts on the set P of lines in F^2 through the origin and that the kernel of this action is the center of $\operatorname{GL}_2(F)$. Here, "line through the origin" is a colloquial term for "1-dimensional subspace." Conclude that $\operatorname{PGL}_2(F)$ acts faithfull on the set P, hence the permutation representation is an injective homomorphism $\operatorname{PGL}_2(F) \to S_P$ to the symmetric group on the elements of P.
 - (c) Calculate $|PGL_2(\mathbb{F}_p)|$.
 - (d) Prove that $PGL_2(\mathbb{F}_3) \cong S_4$. (Hint: How many lines through the origin are there in \mathbb{F}_3^2 ?)
 - (e) For an odd prime p, prove that the map $PSL_2(\mathbb{F}_p) \to PGL_2(\mathbb{F}_p)$, taking the coset represented by M, is a well defined injective homomorphism whose image has index 2. Notice that for p = 3 this is particularly clear!
 - (f) Conclude that $PSL_2(\mathbb{F}_3) \cong A_4$. You may do this in two ways. The cheap way is to appeal, without proof, to a statement that you will prove on the next problem set: $A_n \leq S_n$ is the unique subgroup of index 2. The fun way is as follows: first show that the determinant is a well defined homomorphism det : $PGL_2(\mathbb{F}_3) \to \mathbb{F}_3^{\times}$, then show that under your isomorphism from part (d) the determinant is the same (in the group $\mathbb{F}_3^{\times} \cong \{\pm 1\}$) as the sign of the corresponding permutation. Hint: Think of what the 2-cycles in S_4 look like in $PGL_2(\mathbb{F}_3)$.