YALE UNIVERSITY DEPARTMENT OF MATHEMATICS Math 350 Introduction to Abstract Algebra Fall 2015

Problem Set # 5 (due at the beginning of class on Friday 30 October)

Reading: DF 4.1–4.5.

Problems: (Starred* problems are strongly recommended!)

- **1.** DF 4.1 Exercises 3*, 4, 6, 7*, 8, 9.
- **2.** DF 4.2 Exercises 2, 10^{*}, 11, 13^{*}, 14.
- **3.** DF 4.3 Exercises 5^{*}, 8, 9, 13, 19^{*}, 20, 21, 22, 24, 25, 28^{*}, 29, 34.
- **4.** DF 4.4 Exercises 1, 3, 5*, 10, 11, 18*, 19.
- 5. DF 4.5 Exercises 8*, 16, 18, 22, 26, 30, 39, 40*.
- **6.** Finite vector spaces*. Let V be an \mathbb{F}_p -vector space of (finite) dimension n.
 - (a) What is the isomorphism type of the underlying (finite) abelian group (V, +)?
 - (b) Show that the automorphism group $\operatorname{Aut}((V, +))$ of the abelian group (V, +) is isomorphic to the group $\operatorname{GL}(V)$ of \mathbb{F}_p -linear vector space isomorphisms $\varphi : V \to V$ and that this group is also isomorphic to $\operatorname{GL}_n(\mathbb{F}_p)$.
 - (c) Compute the order of $\operatorname{Aut}(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z})$. Find an automorphism of order 7.

7. Characteristic subgroups*. A subgroup $K \leq G$ is called **characteristic** if $\varphi(K) \subset K$ for every $\varphi \in \operatorname{Aut}(G)$. In particular, any characteristic subgroup is normal. Prove the following.

(a) If $H \leq G$ is normal and $K \leq H$ is characteristic, then $K \leq G$ is normal.

- (b) If $H \leq G$ is characteristic and $K \leq H$ is characteristic, then $K \leq G$ is characteristic.
- (c) The Klein 4-subgroup of S_4 is characteristic. No nontrivial subgroup of the Klein 4-group is characteristic.
- (d) For any group G, the commutator subgroup [G, G], generated by the commutators $xyx^{-1}y^{-1}$ for all $x, y \in G$, is characteristic.
- (e) The center $Z(G) \leq G$ is characteristic.
- (f) If G is cyclic, then every subgroup of G is characteristic.
- (g) For any fixed n and any group G, the intersection of all subgroups of index n in G is characteristic.
- (h) If $H \leq G$ is characteristic, then there is a natural homomorphism $\operatorname{Aut}(G) \to \operatorname{Aut}(G/H)$.