Yale University Department of Mathematics

Math 350 Introduction to Abstract Algebra

Fall 2015
Problem Set \# 6 (due at the beginning of class on Friday 6 November)
Notation: If G is a group and $G^{\prime}=[G, G]$ is the commutator subgroup, then $G^{\text {ab }}=G /[G, G]$ is the abelianization of G. Then $G^{\text {ab }}$ is abelian and there is a canonical surjective homomorphism $G \rightarrow G^{\text {ab }}$, which is often also called the abelianization.

Let $H \preccurlyeq G$ and $\pi: G \rightarrow G / H$ be the natural projection. The following is known as the universal property of the quotient: if $\phi: G \rightarrow K$ is a group homomorphism such that $H \subset \operatorname{ker}(\phi)$ then there exists a unique homomorphism $F: G / H \rightarrow K$ such that $F \circ \pi=\phi$.

Reading: DF 4.5, 5.1-5.4.
Problems: (Starred* problems are strongly recommended!)

1. DF 5.1 Exercises 4, 8, 17* (see 15 for notation).
2. DF 5.2 Exercises $2,3,6,7^{*}, 8,9,11,14^{*}$.
3. DF 5.4 Exercises 4, 5*, 7, 11, 19*.
4. Unfinished business. * The goal of this problem is to complete the proof that 60 is the least order of a finite simple nonabelian group. From class, we had eliminated most of the orders up to 60 using the following facts:

- Every p-group has nontrivial center. (We proved this using the class equation.)
- Every group of order $n=p^{k} m$ with $p \nmid m$ and $m<p$, has a normal Sylow p-subgroup. (From the Sylow theorems.)
This left us with orders $12,24,30,36,40,45,48$, and 56 . We then eliminated case by case:
- We eliminated 40 and 45 using the congruence and divisibility conditions on the number of Sylow subgroups, finding normal Sylow subgroups.
- We eliminated 30 using the fact that every group whose order is the product of three distinct primes has a normal Sylow subgroup. (This is DF §4.3 Problem 16.)
- We eliminated 12 by appealing to a result proved in the book: every group of order 12 either has a normal Sylow 3 -subgroup or is isomorphic to A_{4}. (See DF $\S 4.5$, p. 144.)
This left us with orders $24,36,48$, and 56 . Prove the following to complete our goal:
(a) If G is a finite group of order $2^{k} \cdot 3$, with $k \geq 2$, then G is not simple.
(b) If G is a finite group of order $2^{2} \cdot 3^{k}$, with $k \geq 2$, then G is not simple.
(c) If G is a finite group of order 56 then G is not simple.

Hint: For the first two, consider the conjugation action on the Sylow 2- or 3-subgroups, respectively. For the third, if neither the Sylow 2- nor 7- subgroups are normal, start counting elements in these subgroups to reach a contradiction (note that any two Sylow 7 -subgroups only intersect at the identity, how could Sylow 2-subgroups intersect?).
5. Abelianizing. * Prove the following:
(a) Let $\phi: G \rightarrow G^{\text {ab }}$ be the canonical surjection. For any abelian group H and any homomorphism $f: G \rightarrow H$ there exists a unique homomorphism $F: G^{\mathrm{ab}} \rightarrow H$ such that $f=F \circ \phi$. This is called the universal property of abelianization. Hint: Use another universal property.
(b) For any groups H and K, there is an isomorphism $(H \times K)^{\mathrm{ab}} \cong H^{\mathrm{ab}} \times K^{\mathrm{ab}}$.
(c) Prove that S_{4} is not isomorphic to the direct product $H \times K$ of nontrivial groups. Hint: Abelianize both sides.

