Problem Set \# 8 (due at the beginning of class on Friday 20 November)
Notation: Let R and S be rings. A ring homomorphism between S and R is a map $\varphi: S \rightarrow R$ that is a homomorphism of the underlying abelian groups and is multiplicative, i.e., $\varphi(x+y)=\varphi(x)+\varphi(y)$ and $\varphi(x y)=\varphi(x) \varphi(y)$.

Let R be a commutative ring with $1 \neq 0$. We will write $R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ for the ring of multivariable polynomials in the variables $x_{1}, x_{2}, \ldots, x_{n}$ and with coefficients in R.

Reading: DF 7.1-7.3.
Problems: (Starred* problems are strongly recommended!)

1. DF 7.1 Exercises $3,7,14^{*}, 15,16,21^{*}, 24,26^{*}, 29$.
2. DF 7.2 Exercises $2,3,5^{*}, 13$.
3. Symmetric polynomials ${ }^{*}$. Let R be a commutative ring with $1 \neq 0$.
(a) Consider the symmetric group S_{n} acting on the set $\left\{x_{1}, \ldots, x_{n}\right\}$ by permutations. As usual, extend this action to $R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. For example, if $\sigma=(123) \in S_{3}$, then

$$
\sigma \cdot\left(x_{1} x_{2}-2 x_{3}^{2}+3 x_{2} x_{3}^{2}\right)=x_{2} x_{3}-2 x_{1}^{2}+3 x_{3} x_{1}^{2}
$$

Prove that S_{n} acts on $R\left[x_{1}, \ldots, x_{n}\right]$ by ring homomorphisms. Hint. Consider monomials.
(b) Let $S \subset R\left[x_{1}, \ldots, x_{n}\right]$ be the set of multivariable polynomials that are fixed under the action of S_{n}. Prove that S is a subring with 1 . This is called the ring of symmetric polynomials.
(c) For each $n \geq 0$, define polynomials $e_{i} \in R\left[x_{1}, \ldots, x_{n}\right]$ by $e_{0}=1$ and

$$
e_{1}=x_{1}+\cdots+x_{n}, \quad e_{2}=\sum_{1 \leq i<j \leq n} x_{i} x_{j}, \quad \ldots, \quad e_{n}=x_{1} \cdots x_{n}
$$

and $e_{k}=0$ for $k>n$. In words, e_{k} is the sum of all distinct products of subsets of k distinct variables. Prove that each e_{k} is a symmetric polynomial. These are called the elementary symmetric polynomials.
(d) The generic polynomial of degree n is the polynomial

$$
f(x)=\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{n}\right)
$$

in the ring $R\left[x_{1}, \ldots, x_{n}\right][x]$ of polynomials in x with coefficients in $R\left[x_{1}, \ldots, x_{n}\right]$. Prove (by induction) that
$f(x)=\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{n}\right)=x^{n}-e_{1} x^{n-1}+e_{2} x^{n-2}+\cdots+(-1)^{n} e_{n}=\sum_{j=0}^{n}(-1)^{n-j} e_{n-j} x^{j}$.
(e) For each $k \geq 1$, define the power sums $p_{k}=x_{1}^{k}+\cdots+x_{n}^{k}$ in $R\left[x_{1}, \ldots, x_{n}\right]$. Clearly, the power sums are symmetric. Verify the following identities by hand:

$$
p_{1}=e_{1}, \quad p_{2}=e_{1} p_{1}-2 e_{2}, \quad p_{3}=e_{1} p_{2}-e_{2} p_{1}+3 e_{3}
$$

In general Newton's identities in $R\left[x_{1}, \ldots, x_{n}\right]$ are (recall that $e_{k}=0$ for $k>n$):

$$
p_{k}-e_{1} p_{k-1}+e_{2} p_{k-2}-\cdots+(-1)^{k-1} e_{k-1} p_{1}+(-1)^{k} k e_{k}=0
$$

Prove Newton's identites whenever $k \geq n$.
Hint. For each i, consider the equation in part (d) for $f\left(x_{i}\right)$ and sum all these equations together. This gives Newton's identity for $k=n$. Set extra variables to zero to get the identities for $k>n$ from this. (Fun. Can you come up with a proof when $1 \leq k \leq n$?)

