Problem Set #8 (due at the beginning of class on Friday 20 November)

Notation: Let R and S be rings. A **ring homomorphism** between S and R is a map $\varphi: S \to R$ that is a homomorphism of the underlying abelian groups and is multiplicative, i.e., $\varphi(x+y) = \varphi(x) + \varphi(y)$ and $\varphi(xy) = \varphi(x)\varphi(y)$.

Let R be a commutative ring with $1 \neq 0$. We will write $R[x_1, x_2, \ldots, x_n]$ for the ring of multivariable polynomials in the variables x_1, x_2, \ldots, x_n and with coefficients in R.

Reading: DF 7.1–7.3.

Problems: (Starred* problems are strongly recommended!)

- 1. DF 7.1 Exercises 3, 7, 14*, 15, 16, 21*, 24, 26*, 29.
- **2.** DF 7.2 Exercises 2, 3, 5*, 13.
- **3.** Symmetric polynomials*. Let R be a commutative ring with $1 \neq 0$.
 - (a) Consider the symmetric group S_n acting on the set $\{x_1, \ldots, x_n\}$ by permutations. As usual, extend this action to $R[x_1, x_2, \ldots, x_n]$. For example, if $\sigma = (123) \in S_3$, then

$$\sigma \cdot (x_1 x_2 - 2x_3^2 + 3x_2 x_3^2) = x_2 x_3 - 2x_1^2 + 3x_3 x_1^2.$$

Prove that S_n acts on $R[x_1, \ldots, x_n]$ by ring homomorphisms. Hint. Consider monomials.

- (b) Let $S \subset R[x_1, ..., x_n]$ be the set of multivariable polynomials that are fixed under the action of S_n . Prove that S is a subring with 1. This is called the **ring of symmetric polynomials**.
- (c) For each $n \geq 0$, define polynomials $e_i \in R[x_1, \ldots, x_n]$ by $e_0 = 1$ and

$$e_1 = x_1 + \dots + x_n, \quad e_2 = \sum_{1 \le i \le j \le n} x_i x_j, \quad \dots, \quad e_n = x_1 \cdots x_n$$

and $e_k = 0$ for k > n. In words, e_k is the sum of all distinct products of subsets of k distinct variables. Prove that each e_k is a symmetric polynomial. These are called the elementary symmetric polynomials.

(d) The **generic polynomial** of degree n is the polynomial

$$f(x) = (x - x_1)(x - x_2) \cdots (x - x_n)$$

in the ring $R[x_1, \ldots, x_n][x]$ of polynomials in x with coefficients in $R[x_1, \ldots, x_n]$. Prove (by induction) that

$$f(x) = (x - x_1)(x - x_2) \cdots (x - x_n) = x^n - e_1 x^{n-1} + e_2 x^{n-2} + \dots + (-1)^n e_n = \sum_{i=0}^n (-1)^{n-i} e_{n-i} x^j.$$

(e) For each $k \ge 1$, define the **power sums** $p_k = x_1^k + \cdots + x_n^k$ in $R[x_1, \dots, x_n]$. Clearly, the power sums are symmetric. Verify the following identities by hand:

$$p_1 = e_1, \quad p_2 = e_1p_1 - 2e_2, \quad p_3 = e_1p_2 - e_2p_1 + 3e_3$$

In general **Newton's identities** in $R[x_1, \ldots, x_n]$ are (recall that $e_k = 0$ for k > n):

$$p_k - e_1 p_{k-1} + e_2 p_{k-2} - \dots + (-1)^{k-1} e_{k-1} p_1 + (-1)^k k e_k = 0.$$

Prove Newton's identites whenever k > n.

Hint. For each i, consider the equation in part (d) for $f(x_i)$ and sum all these equations together. This gives Newton's identity for k = n. Set extra variables to zero to get the identities for k > n from this. (Fun. Can you come up with a proof when $1 \le k \le n$?)