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3. There is an injective homomorphism Sn → A2n sending each σ permutation of {1, . . . , n}
to the product σσ′, where σ′ is the same permutation as σ, except it acts on {n + 1, . . . , 2n}.
The product of two disjoint permutations of the same length is always even. Checking that
this defines an injective homomorphism is straightforward (since σ and σ′ commute). Then,
given any group G of order n, the left regular representation yields an injective homomorphism
G→ Sn, which we can then compose with Sn → A2n.

4. Using Euler’s theorem, 11104 + 1 ≡ 118 + 1 mod 17 since 104 ≡ 8 mod 16, and ϕ(17) = 16.
Now 112 = 121 ≡ 2 mod 17, so 118 = ((112)2)2 ≡ (22)2 ≡ 16 mod 17, hence 11104 + 1 ≡ 16 + 1 ≡
0 mod 17, and thus 11104 + 1 is divisible by 17.

5. By the classification theorem for finite abelian groups, the number of isomorphism classes
only depends on the number of times a given prime number divides the order. So there are three
cases to consider.

Case 1, p = q = r. Then we are considering groups of order p6. Elementary divisors are
in bijection with partitions of 6. There are eleven of them: (6), (5, 1), (4, 2), (4, 1, 1), (3, 3),
(3, 2, 1), (3, 1, 1, 1), (2, 2, 2), (2, 2, 1, 1), (2, 1, 1, 1, 1), (1, 1, 1, 1, 1, 1). So there are 11 isomorphism
classes of abelian group of order p6.

Case 2, p = r, q 6= p. Then we are considering groups of order p4q2. Elementary divisors for
the p-part are in bijection with partitions of 4, of which there are five: (4), (3, 1), (2, 2), (2, 1, 1),
(1, 1, 1, 1). Elementary divisors for the q-part are in bijection with partitions of 2, of which there
are two: (2), (1, 1). So there are 10 = 5 · 2 isomorphism classes of abelian group of order p4q2.

Case 3, p, q, r different. Then we are considering groups of order p2q2r2. There are 8 = 2 ·2 ·2
isomorphism classes of abelian group of order p2q2r2.

6. Let G be a group of order 245 = 5 · 72. Let F be a Sylow 5−subgroup and S be a Sylow
7−subgroup. As n5 ≡ 1 (mod 5) and n5|72, we see that n5 = 1, and thus F C6 G. Also
S C6 G since its index is the smallest prime dividing the order of G. By Lagrange’s theorem,
F ⊂ S = {1}, since they have relatively prime orders. Hence by the recognition theorem for
direct products, G ∼= F × S. Now F ∼= Z5, since its order is prime. We previously proved in
class that a group of order p2 is abelian, hence S is either isomorphic to Z49 or Z7 × Z7. In
conclusion, there are two possible isomorphism classes of groups of order 245: Z245

∼= Z5 × Z49

or Z35 × Z7
∼= Z5 × Z7 × Z7.

7. By Cauchy’s theorem, G has an element of order 7, which generates a subgroup K ⊂ G of
order 7. By Lagrange’s theorem, K ∩H = {1}, since their orders are relatively prime. Hence by
the recognition theorem for semi-direct products, G ∼= H oK with respect to a homomorphism
ϕ : K → Aut(H). As we learned in one of the problem sets, the automorphism group of S6
has order 2 · 6!, with the subgroup of inner automorphisms isomorphic to S6. By Lagrange’s
theorem, Aut(H) has no element of order 7, hence ϕ is the trivial homomorphism. We conclude
that G ∼= H ×K ∼= S6 × Z7.



We know that the abelianization of S7 is isomorphic to Z2. Since abelianization commutes
with direct products, the abelianization of S6 × Z7 is isomorphic to Z2 × Z7, hence S7 is not
isomorphic to S6 × Z7, and hence cannot contain any normal subgroup isomorphic to S6.

8. By the problem sets, if f(x) ∈ Fp[x] is an irreducible polynomial of degree r, then Fp[x]/(f(x))
is a field of order pr. Hence we must find irreducible polynomials of degree 3 over F2, F3, and
F5. By the book, we know that a polynomial of degree 3 is irreducible over a field if and only if
it has no roots in that field (remember that this is false for polynomials of degree 4 and higher).
It’s easy to check (by plugging in the elements) that the polynomial x3 + x + 1 is irreducible
over F2 and F5 while the polynomial x3 + x2 + x− 1 is irreducible over F3.

By the problem sets, we know that if Fpr is a field of order pr, then F×pr is a cyclic group
of order pr − 1. In particular, by the structure theory of subgroups of cyclic groups, for every
divisor of pr − 1 there is an element of that order. So F×8 has elements of order 1 and 7; F×27 has
elements of order 1, 2, 13, and 26; and F×125 has elements of order 1, 2, 4, 31, 62, and 124.

9. To prove that R is a subring, we need to verify that it is closed under addition, which is
obvious, and under multiplication:(

a b
b a

)(
c d
d c

)
=

(
ac+ bd ad+ bc
bc+ ad bd+ ac

)
In fact, R also contains the identity of M2(R), and the commutativity is apparent from the
formula for the product. We can see from the product:(

1 1
1 1

)(
1 −1
−1 1

)
=

(
0 0
0 0

)
that R is not an integral domain. Calculating the square of an element:(

a b
b a

)2

=

(
a2 + b2 2ab

2ab a2 + b2

)
we see that to find an idempotent, we must simultaneously solve the equations a2 + b2 = a and
2ab = b in R. If b = 0, then the second is solved, and the first yields a = 0 of 1. If b 6= 0, then
(since R is a field) we can cancel b from the second equation to get a = 1/2, from which the first
equation yields b = ±1/2. Hence the idempotents are:(

0 0
0 0

)
,

(
1 0
0 1

)
,

(
1/2 1/2
1/2 1/2

)
,

(
1/2 −1/2
−1/2 1/2

)
To study nilpotent elements, we need to compute powers, and it is most natural to consider
eigenvalues. The characteristic polynomial of an element of R is x2 − 2ax+ a2 − b2 = (x− (a−
b))(x− (a+ b)). So the eigenvalues are a± b. Any nilpotent matrix must have all its eigenvalues
nilpotent (indeed, if λ is an eigenvalue of A then λk is an eigenvalue to Ak, and the zero matrix
has all zero eigenvalues), and since we are over a field, all eigenvalues must zero. However, the
only way for both a± b = 0, is that a = b = 0, so there are no nonzero nilpotent elements.

Now we consider the map ϕ : R→ R. It is clearly additive; to check that it is multiplicative,
we use the above formula for the product, verifying that (a− b)(c− d) = (ac+ bd)− (ad+ bc).
It also preserves identities, so ϕ is a homomorphism of rings with 1. The kernel consists of all
matrices of the form: (

a a
a a

)



The map ker(ϕ) → R taking such a matrix to a is clearly a group homomorphism between
additive groups (it is not a ring homomorphism, however). Considering scalar multiples of the
identity, we see that ϕ is surjective, hence by the first isomorphism theorem, R/ ker(ϕ) ∼= R.
In particular, ker(ϕ) is a maximal ideal, hence by a theorem from class (since we are in a
commutative ring), is also a prime ideal.

10. As R is a subring of the Q-quaternions, which is a division ring, we know that a quaternion
x = a+ bi+ cj + dk is invertible if and only if N(x) = xx = a2 + b2 + c2 + d2 is a unit in Z, and
then the inverse is x/N(x). Since Z× = {±1}, we are left to solve a2 + b2 + c2 + d2 = ±1. Since
a sum of squares can only be positive, only a2 + b2 + c2 + d2 = 1 is possible, and then the only
solutions are (a, b, c, d) of the form (±1, 0, 0, 0), (0,±1, 0, 0), (0, 0,±1, 0), or (0, 0, 0,±1). Hence
R× = {±1,±i,±j,±k} is isomorphic to the quaternion group of order 8.

11. By a problem set exercise, a unit in R[x] must have unit constant term and all other
coefficients nilpotent. In Z/4Z, the only nonzero nilpotent is 2. Hence for each n ≥ 0, the
element 1 + 2xn ∈ Z/4Z[x] will be a unit (in fact, it’s its own inverse).

12. Since Z/36Z is a cyclic group, any group homomorphism is determined by where it sends
1, and the image of 1 must be an element of order dividing 36. Since gcd(36, 48) = 12, a
homomorphism ϕ : Z/36Z → Z/48Z must send 1 to an element of order dividing 12, which
consists of the subgroup of Z/48Z generated by 48/12 = 4. It is straightforward to check that
if G = 〈g〉 is a cyclic group and H is any abelian groups and ϕ1, ϕ2 ∈ Hom(G,H) satisfy
ϕi(g) = ai ∈ H, then the element ϕ1 + ϕ2 ∈ Hom(G,H) satisfies (ϕ1 + ϕ2)(g) = a1 + a2, and
thus we have that Hom(G,H) is isomorphic to the subgroup {ϕ(g) |ϕ ∈ HomZ(G,H)} ⊂ H.
Hence Hom(Z/36Z,Z/48Z) is isomorphic to the subgroup of Z/48Z generated by 4, which is a
cyclic group of order 12.

Similarly, as additive groups, Hom(Z/36Z,Z/36Z) and Hom(Z/48Z,Z/48Z) are cyclic of order
36 and 48, respectively. In fact, it is similarly straightforward to prove that if G = 〈g〉 is a cyclic
group then the map Hom(G,G)→ G defined by ϕ 7→ ϕ(g) is multiplicative. In conclusion, this
defines a ring isomorphism Hom(G,G) ∼= G for any cyclic group G.

13.

• We discussed how Gauss proved that Z[i] is a Euclidean domain for the standard norm.
This is not isomorphic to either Z (since it has an element of multiplicative order 4)
nor to F [x] for any field F (any such F would have to have characteristic zero, which is
impossible, since for example 2 = 1 + 1 ∈ Z[i] is not invertible but it would be in F [x]).

• A Euclidean domain is a PID, as proved in class, so the above example works.

• Technically speaking, a Euclidean domain must be an integral domain, so there are plenty
of quotients of Z (e.g., Z/4Z) or F [x] (e.g., F [x]/(x2)) that are not integral domains.
If we ask whether any quotient of Z or F [x], which is an integral domain, is Euclidean,
then the answer is “yes.” Indeed, any quotient of Z is either Z itself or is Z/nZ, which
is a domain only when it is a field (remember that finite integral domains are fields).
Similarly, any quotient of F [x] is either F [x] itself, or is F [x]/(f(x)), which, by the
Chinese remainder theorem and the fact that F [x] is a UFD, is a domain if and only
if f(x) is irreducible if and only if F [x]/(f(x)) is a field. Recall that a field is always
Euclidean, with respect to the zero norm.



• As above, technically speaking, a PID must be an integral domain, so there are plenty
of quotients of Z of F [x] that are not integral domains. If a particular quotient is an
integral domain, then by the lattice isomorphism theorem, it is a PID.

• In class, it was stated that there are only finitely many imaginary quadratic integer rings
that are Euclidean, but many more that are PID. For example, Z[(1 +

√
−19)/2] is one.

• As discussed in class, F [x, y] is a UFD but not a PID.

• Impossible, any Euclidean domain is a PID.

14. For example Z ⊂ Z[12 ] ⊂ D−1Z ⊂ Q, where D = Z r (p), where p is any odd prime.
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