Yale University Department of Mathematics

Math 350 Introduction to Abstract Algebra

Fall 2016
Problem Set \# 2 (due at the beginning of class on Friday 23 September)
Notation: Z_{n} is an abstract cyclic group written multiplicatively.
Reading: DF 1.4, 1.7, 2.1-2.3.

Problems:

1. DF 1.7 Exercises 5, 17 (this gives another proof of 1.1 Exercise 22), 18*, 19*.
2. DF 2.1 Exercises $2,6^{*}, 7,8,9^{*}, 14,15$.
3. DF 2.3 Exercises $2,5,8^{*}, 10,12^{*}, 20,21^{*}, 22^{*}, 23^{*}$ (Hint: What does 22 tell you about the order of 5 in $\left(\mathbb{Z} / 2^{n} \mathbb{Z}\right)^{\times}$?), $25,26^{*}$.
4. DF 2.4 Exercises 6, 7, 8, 9*, 11* (Hint: What are the orders of elements in S_{4} ?), 13, 12*, $14^{*}, 15,19$.
5. Let $\mathbb{F}_{4}=\{0,1, x, y\}$. Prove that there are operations + and \cdot on \mathbb{F}_{4}, such that $1+x=y$ and $x^{2}=y$, making \mathbb{F}_{4} into a field. Note that the four elements of \mathbb{F}_{4} are distinct! Essentially the problem is to fill out the addition and multiplication tables:

+	0	1	x	y
0				
1				
x				
y				

\cdot	0	1	x	y
0				
1				
x				
y				

You already know certain rows and columns by properties of 0 and 1 in a field!

