Yale University Department of Mathematics

Math 350 Introduction to Abstract Algebra

Fall 2016
Problem Set \# 3 (due at the beginning of class on Friday 30 September)
Notation: A subgroup $K \subset G$ is called normal if $g x g^{-1} \in K$ for every $x \in K$ and $g \in G$. It is common notation to denote a subgroup by $K \leqslant G$ and a normal subgroup by $K \leqslant G$.

If G and H are groups, the the cartesian product $G \times H$ is a group under the operation $(g, h) \cdot\left(g^{\prime}, h^{\prime}\right)=\left(g g^{\prime}, h h^{\prime}\right)$ for all $g, g^{\prime} \in G$ and $h, h^{\prime} \in H$.

Reading: DF 2.2-3.2.

Problems:

1. DF 2.2 Exercises $6,7^{*}, 12,14$.
2. DF 2.5 Exercises $4,10,12^{*}, 14^{*}, 15$.
3. DF 3.1 Exercises $5,6,7,8,9,10,11^{*}, 12,22,25^{*}, 26^{*}$ (you actually already did part a).
4. DF 3.2 Exercises $4^{*}, 5,8^{*}, 9,13^{*}, 14^{*}, 16^{*}, 19,22^{*}$ (Euler's theorem!).
5. Show that for all $n, m \geq 1$, the group S_{n+m} contains a subgroup isomorphic to $S_{n} \times S_{m}$. Conclude that $n!m$! divides $(n+m)$!.
6. Let H be the subgroup of S_{4} generated by the 3 -cycles. Show that there exists a positive integer n, with n dividing the order of H, and such that H has no subgroup of order n.
7. Define the sequence $\left\{f_{m}\right\}_{m \geq 0}$ of Fibonacci numbers

$$
0,1,1,2,3,5,8,13,21,34,55, \ldots
$$

by the recursive formula $f_{m+2}=f_{m}+f_{m+1}$ for all $m \geq 0$. The purpose is to prove:
Theorem. If p is a prime number, then p divides $f_{2 p\left(p^{2}-1\right)}$.
(a) Prove that for each $m \geq 1$, we have

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)^{m}=\left(\begin{array}{cc}
f_{m+1} & f_{m} \\
f_{m} & f_{m-1}
\end{array}\right)
$$

(b) For any prime p, show that

$$
G_{p}=\left\{M \in \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right) \mid \operatorname{det}(M)= \pm 1\right\}
$$

is a group under matrix multiplication and calculate its order.
(c) Consider $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$ as an element in G_{p}. Use the order of G to bound the order of A, and then use this to conclude that $f_{2 p\left(p^{2}-1\right)} \equiv 0(\bmod p)$.
8. Tricks with Euler's theorem. You can only use pencil and paper!
(a) Find the remainder after dividing 99^{999999} by 19 .
(b) Prove that every element of $(\mathbb{Z} / 72 \mathbb{Z})^{\times}$has order dividing 12. (Hint: This is better than what a straight application of Euler's theorem will give you! Try applying Euler's theorem to a pair of relatively prime divisors of 72.)
(c) Find the last two digits of the huge number $3^{3^{3}}$ where there are 2016 threes appearing! (Hint: Do nested applications of Euler's theorem.)

