YALE UNIVERSITY DEPARTMENT OF MATHEMATICS Math 350 Introduction to Abstract Algebra Fall 2016

Problem Set # 4 (due at the beginning of class on Friday 7 October)

Notation: The sign $\operatorname{sgn}(\sigma) \in \{\pm 1\}$ of a permutation $\sigma \in S_n$ is defined by $\sigma(\Delta) = \operatorname{sgn}(\sigma)\Delta$, where $\Delta = \prod_{i < j} (x_i - x_j)$. Equivalently, $\operatorname{sgn}(\sigma)$ is 1 (resp. -1) if σ can be written as a product of an even (resp. odd) number of transpositions. The map $\operatorname{sgn} : S_n \to \{\pm 1\}$ is a homomorphism with kernel the alternating group A_n .

Reading: DF 3.3, 3.5.

Problems:

1. DF 3.3 Exercises 2, 3, 6^{*}, 7^{*} (note that in particular, if also $M \cap N = \{e\}$ then $G \cong M \times N$ and we say that G is the **internal direct product** of M and N), 8, 9^{*}.

2. DF 3.5 Exercises 3*, 4*, 6*, 13*, 14, 15, 17*.

3. More classification. Prove that if G is an abelian group of order pq, where p an q are distinct primes numbers, then G is cyclic. You can use Cauchy's theorem for abelian groups.

- 4. Some isomorphisms.
 - (a) For any field F, prove that the center of $\operatorname{GL}_2(F)$ consists of F^{\times} multiples of the identity matrix. What is the center of $\operatorname{SL}_2(F)$? We denote by $\operatorname{PGL}_2(F) = \operatorname{GL}_2(F)/Z(\operatorname{GL}_2(F))$ and $\operatorname{PSL}_2(F) = \operatorname{SL}_2(F)/Z(\operatorname{SL}_2(F))$.
 - (b) Prove that $\operatorname{GL}_2(F)$ acts on the set P of lines in F^2 through the origin and that the kernel of this action is the center of $\operatorname{GL}_2(F)$. Here, "line through the origin" is a colloquial term for "1-dimensional subspace." Conclude that $\operatorname{PGL}_2(F)$ acts faithfully on the set P, hence the permutation representation is an injective homomorphism $\operatorname{PGL}_2(F) \to S_P$ to the symmetric group on the elements of P.
 - (c) Calculate $|PGL_2(\mathbb{F}_p)|$.
 - (d) Prove that $PGL_2(\mathbb{F}_3) \cong S_4$. (Hint: How many lines through the origin are there in \mathbb{F}_3^2 ?)
 - (e) For an odd prime p, prove that the map $PSL_2(\mathbb{F}_p) \to PGL_2(\mathbb{F}_p)$, taking the coset represented by M to the coset represented by M, is a well defined injective homomorphism whose image has index 2. Notice that for p = 3 this is particularly clear!
 - (f) Prove that $PSL_2(\mathbb{F}_3) \cong A_4$. Hint: First show that the determinant is a well defined homomorphism det : $PGL_2(\mathbb{F}_3) \to \mathbb{F}_3^{\times}$, then show that under your isomorphism from part (d) the determinant is the same (in the group $\mathbb{F}_3^{\times} \cong \{\pm 1\}$) as the sign of the corresponding permutation. For this, think of what the transpositions in S_4 look like in $PGL_2(\mathbb{F}_3)$.
 - (g) We know that A_4 has a normal subgroup isomorphic to the Klein four group V_4 . Via the isomorphism in (f), write the corresponding subgroup in $PSL_2(\mathbb{F}_3)$ as a group of matrices (modulo ± 1).