Yale University Department of Mathematics

Math 350 Introduction to Abstract Algebra

Fall 2016
Problem Set \# 4 (due at the beginning of class on Friday 7 October)
Notation: The $\operatorname{sign} \operatorname{sgn}(\sigma) \in\{ \pm 1\}$ of a permutation $\sigma \in S_{n}$ is defined by $\sigma(\Delta)=\operatorname{sgn}(\sigma) \Delta$, where $\Delta=\prod_{i<j}\left(x_{i}-x_{j}\right)$. Equivalently, $\operatorname{sgn}(\sigma)$ is 1 (resp. -1$)$ if σ can be written as a product of an even (resp. odd) number of transpositions. The map sgn : $S_{n} \rightarrow\{ \pm 1\}$ is a homomorphism with kernel the alternating group A_{n}.

Reading: DF 3.3, 3.5.

Problems:

1. DF 3.3 Exercises 2, 3, $6^{*}, 7^{*}$ (note that in particular, if also $M \cap N=\{e\}$ then $G \cong M \times N$ and we say that G is the internal direct product of M and N), $8,9^{*}$.
2. DF 3.5 Exercises $3^{*}, 4^{*}, 6^{*}, 13^{*}, 14,15,17^{*}$.
3. More classification. Prove that if G is an abelian group of order $p q$, where p an q are distinct primes numbers, then G is cyclic. You can use Cauchy's theorem for abelian groups.
4. Some isomorphisms.
(a) For any field F, prove that the center of $\mathrm{GL}_{2}(F)$ consists of F^{\times}multiples of the identity matrix. What is the center of $\mathrm{SL}_{2}(F)$? We denote by $\mathrm{PGL}_{2}(F)=\mathrm{GL}_{2}(F) / Z\left(\mathrm{GL}_{2}(F)\right)$ and $\mathrm{PSL}_{2}(F)=\mathrm{SL}_{2}(F) / Z\left(\mathrm{SL}_{2}(F)\right)$.
(b) Prove that $\mathrm{GL}_{2}(F)$ acts on the set P of lines in F^{2} through the origin and that the kernel of this action is the center of $\mathrm{GL}_{2}(F)$. Here, "line through the origin" is a colloquial term for "1-dimensional subspace." Conclude that $\mathrm{PGL}_{2}(F)$ acts faithfully on the set P, hence the permutation representation is an injective homomorphism $\mathrm{PGL}_{2}(F) \rightarrow S_{P}$ to the symmetric group on the elements of P.
(c) Calculate $\left|\mathrm{PGL}_{2}\left(\mathbb{F}_{p}\right)\right|$.
(d) Prove that $\mathrm{PGL}_{2}\left(\mathbb{F}_{3}\right) \cong S_{4}$. (Hint: How many lines through the origin are there in \mathbb{F}_{3}^{2} ?)
(e) For an odd prime p, prove that the map $\mathrm{PSL}_{2}\left(\mathbb{F}_{p}\right) \rightarrow \mathrm{PGL}_{2}\left(\mathbb{F}_{p}\right)$, taking the coset represented by M to the coset represented by M, is a well defined injective homomorphism whose image has index 2 . Notice that for $p=3$ this is particularly clear!
(f) Prove that $\mathrm{PSL}_{2}\left(\mathbb{F}_{3}\right) \cong A_{4}$. Hint: First show that the determinant is a well defined homomorphism det : $\mathrm{PGL}_{2}\left(\mathbb{F}_{3}\right) \rightarrow \mathbb{F}_{3}^{\times}$, then show that under your isomorphism from part (d) the determinant is the same (in the group $\mathbb{F}_{3}^{\times} \cong\{ \pm 1\}$) as the sign of the corresponding permutation. For this, think of what the transpositions in S_{4} look like in $\mathrm{PGL}_{2}\left(\mathbb{F}_{3}\right)$.
(g) We know that A_{4} has a normal subgroup isomorphic to the Klein four group V_{4}. Via the isomorphism in (f), write the corresponding subgroup in $\mathrm{PSL}_{2}\left(\mathbb{F}_{3}\right)$ as a group of matrices (modulo ± 1).
