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Midterm Exam Review Solutions

Practice exam questions:

2. Let V1 ⊂ R2 be the subset of all vectors whose slope is an integer. Let V2 ⊂ R2 be
the subset of all vectors whose slope is a rational number. Determine if V1 and/or V2 is a
subgroup of R2, with usual vector addition.

Solution. V1 contains zero (if one defines the slope of the origin to be 0), is closed under
taking inverses (negation actually preserves slope), but is not closed under addition. For
example, v = (1, 2) has slope 2 and w = (1, 1) has slope 1, but v+w = (3, 2) has slope 3/2.
V2 contains zero, is closed under taking inverses, but is not closed under addition. For

example, v = (1, 0) has slope 0 and w = (
√

2,
√

2) has slope 1, but v + w has slope√
2/(1 +

√
2) = 2−

√
2, which is not rational.

3. Write down a nontrivial homomorphism ϕ : Z/36Z→ Z/48Z and compute its image and
kernel.

Solution. Since the domain is a cyclic group, we only need to specify where a generator
is sent, and verify the relations. So we need to choose ϕ(1) whose order divides 36. For
example, gcd(36, 48) = 12, so we could choose ϕ(1) to be any element of order 12 in Z/48Z,
for example, 48/12 = 4 has order 12. So the choice of φ(1) = 4 will produce a well defined
(and nontrivial) homomorphism ϕ : Z/36Z → Z/48Z. The image is the cyclic subgroup
〈4〉 6 Z/48Z, which is itself a cyclic group of order 12. Since ϕ(1) has order 12, it shows
that ϕ(12) = 0 and in fact that the ker(ϕ) is the cyclic subgroup 〈12〉 6 Z/36/Z, which is
itself a cyclic group of order 36/12 = 3. Of course, any choice of element of Z/48Z whose
order divides 36 would have worked, for example, 24 ∈ Z/48Z has order 2, which gives
another nontrivial example.

If there was an injective homomorphism, its image would be a subgroup of Z/48Z of
order 36, which cannot exist by Lagrange’s theorem. No surjective homomorphism can
exist because |Z/36Z| < |Z/48Z|.

4. How many elements of order 6 are there in S6? In A6?

Solution. Considering the disjoint cycle decomposition, and the formula for the order of
a product of disjoint cycles as the lcm of the cycle lengths, the only elements of order 6 in
S6 are the 6-cycles or the (2, 3)-cycles. There are 5! choices of 6-cycles, indeed, a 6-cycle
must contain all numbers 1, . . . , 6 and we can always cyclically permute so that 1 is the
first number, then there 5! distinct choices for the rest of the numbers. There are 2 ·

(
6
2

)(
4
3

)
choices of (2, 3)-cycles, indeed, choosing a 2-cycle is equivalent to choosing 2 elements out of
6 and then 3 elements out of the remaining 4, with the understanding that for each choice
there is a unique 2-cycle and two possible 3-cycles with those given sets of numbers. (Or
you can memorize formulas in the book for the number of n-cycles in a symmetric group.)
In total, there are 120 + 120 = 240 elements of order 6 in S6 (which is 1/3 of the elements!).

The elements of order 6 in A6 are the even permutations of order 6 in Sn. But none of
them are even! So there are no elements of order 6 in A6!



5. Prove that 11104 + 1 is divisible by 17.

Solution. We use Euler’s theorem to compute 11104 mod 17. Since 1116 ≡ 1 (mod 17) we
reduce 104 = 6 · 16 + 8 mod 16, so that 11104 ≡ 118 (mod 17). Now 118 = (112)4 = 1218,
so we can simplify by reducing 121 = 7 · 17 + 2 mod 17, so that 118 ≡ 1214 ≡ 24 ≡ 16
(mod 17). Then 11104 + 1 ≡ 16 + 1 ≡ 0 (mod 17), implying that 11104 is divisible by 17.

6. Write down two elements of S10 that generate a subgroup isomorphic to D10. (Hint: Use
the left multiplication action on D10.)

Solution. If we order the elements of D10 = {1, r, . . . , r4, s, sr, . . . , sr4} in the usual way,
then we can compute the permutations induced the elements of D10 by left multiplying by
r and s. We see that r corresponds to the permutation (12345)(10 9876) and s corresponds
to the permutation (16)(27)(38)(49)(5 10). Since the left multiplication action is always
faithful, the image of its permutation representation is a subgroup of S10 isomorphic to D10

and generated by the images of r and s.

7. Consider the left regular permutation representation Sn → Sn!. Describe the cycle type
in Sn! of the image of an n-cycle in Sn.

Solution. Let σ be an n-cycle and z any element of Sn. Then the cycle containing z in
the permutation induced by left multiplication by σ on Sn, is just {z, σz, σ2z, . . . , σn−1z}.
Indeed, if σiz = σjz, then i ≡ j (mod n). If we imagined ordering all n! elements of Sn,
then we see that σ would permute the elements as a disjoint product of n-cycles, in fact
(n−1)! of them. In fact, the same argument shows that if σ is any element of order k in Sn,
then the cycle type of the permutation induced by σ via left multiplication, is a product of
n!/k disjoint k-cycles. This makes all permutation in Sn look “regular.”

8. Prove that CSn

(
(12)(34)

)
has 8 (n − 4)! elements for n ≥ 4 and explicitly determine all

of them.

Solution. We know that the size of the conjugacy class in Sn containing σ = (12)(34)
is [Sn : CSn((12)(34))]. But we also know that this conjugacy class consists of all type
(2, 2)-cycles. We can count the number of them. Choosing a type (2, 2)-cycle is equivalent
to choosing 2 elements out of n and then 2 elements out of the remaining n − 2, and
remembering that we can switch the order of the two disjoint 2-cycles we’ve just chosen.
So the number is 1

2

(
n
2

)(
n−2
2

)
. Thus

|CSn((12)(34))| = n!
1
2

(
n
2

)(
n−2
2

) = 8 (n− 4)!

Explicitly, CSn((12)(34)) = CS4((12)(34)) ·Sn−4, where Sn−4 is the symmetric subgroup on
{4, 5, . . . , n}, and CS4((12)(34)) = {1, (12), (34), (12)(34), (13)(24), (14)(23), (1324), (1423)}.

9. Show that the set of nonzero matrices of the form(
a 3b
b a

)
is a cyclic subgroup of GL2(F5). What is the order of this subgroup?



Solution. Let’s denote this matrix by M(a, b). First, note that there are 24 such choices
of nonzero matrices M(a, b), since each of a and b can range over F5, but both can’t be
zero. Next, note that detM(a, b) = a2 − 3b2 is only zero when a = b = 0, which we can
check directly, noting that the only squares in F5 are 0, 1, and 4. So these 24 matrices
are certainly contained in GL2(F5). We also see that M(a, b)M(c, d) = M(c, d)M(a, b) =
M(ac + 3bd, ad + bc), hence this subset is closed under multiplication and all elements
commute, so it forms an abelian subgroup of GL2(F5). To prove that it is cyclic, we need
to show that (at least) one of these elements has order 24.

We first note that 2 and 3 have order 4 in F×
5 , so |M(2, 0)| = |M(3, 0)| = 4. Next, let’s

look at the next easiest case, M(0, a)2 = M(3a2, 0), hence |M(0, b)| = 8 for any b ∈ F×
5 ,

in view of the fact that 3a2 is always either 3 or 2. Now, if we can also find an element of
order 3, then its product with an element of order 8 will have order 24, by PS 1 (we are in
an abelian group). To find an element of order 3, we are looking for a matrix that satisfies
the polynomial x3 − 1 = (x− 1)(x2 + x+ 1). So if it satisfies x2 + x+ 1, then it will have
order 3. The characteristic polynomial of M(a, b) is x2 − 2ax + a2 − 3b2, so that choosing
(a, b) = (2, 1), for example, gives a matrix M(2, 1) that satisfies the correct polynomial (by
the Cayley–Hamilton theorem) so has order 3. Hence M(0, 1)M(2, 1) = M(3, 2) has order
24, and we’ve just proved that this subgroup is cyclic of order 24.

10. Find the highest power of p dividing the order of GLn(Fp). Find a Sylow p-subgroup
of GLn(Fp). (Hint: Think upper triangular.)

Solution. From class, we’ve seen several times that

|GLn(Fp)| = (pn − 1)(pn − p)(pn − p2) · · · (pn − pn−1)

we can factor 0 + 1 + 2 + · · · + (n − 1) = n(n − 1)/2 powers of p out and what remains
(pn − 1)(pn−1 − 1) · · · (p− 1) will not be divisible by p.

Following the hint, and being inspired by some stuff we did on a previous problem set,
we can see that the subgroup (you basically checked that this was a subgroup in homework)
of all “unipotent” matrices, i.e., upper triangular matrices with ones on the diagonal,

1 ∗ ∗ · · · ∗ ∗
0 1 ∗ · · · ∗ ∗
0 0 1 ∗ ∗
...

...
...

. . .
...

...
0 0 0 1 ∗
0 0 0 · · · 0 1


has n(n − 1)/2 spots where any element of Fp can go, so the order of this subgroup is

pn(n−1)/2, hence it’s a Sylow p-subgroup.


