YALE UNIVERSITY DEPARTMENT OF MATHEMATICS Math 350 Introduction to Abstract Algebra Fall 2017

Extra Fun Problems

Notation: A_n denotes the alternating group on *n* objects, the index 2 subgroup of the symmetric group S_n , generated by even products of 2-cycles. For example, A_4 is the subgroup of S_4 generated by 3-cycles.

Recall the definition of $PGL_2(F)$ and $PSL_2(F)$ from Problem Set #4.

Problems:

- **1.** Prove that an integer n > 1 is a prime number if and only if $(n-1)! \equiv -1 \pmod{n}$.
- 2. Prove the following presentations.
 - (a) $A_4 = \langle x, y \mid x^2 = y^3 = (xy)^3 = 1 \rangle$
 - (b) $S_4 = \langle x, y \mid x^2 = y^3 = (xy)^4 = 1 \rangle$
 - (c) $A_5 = \langle x, y \mid x^2 = y^3 = (xy)^5 = 1 \rangle$
- **3.** Recall the set of lines through the origin in \mathbb{F}_q^2 .
 - (a) Prove that $\operatorname{PGL}_2(\mathbb{F}_4) \cong \operatorname{PSL}_2(\mathbb{F}_4) \cong \operatorname{SL}_2(\mathbb{F}_4) \cong A_5$.
 - (b) Prove that $\operatorname{PGL}_2(\mathbb{F}_5) \cong S_5$ and that $\operatorname{PSL}_2(\mathbb{F}_5) \cong A_5$. Hint: The action on the lines gives an injective homomorphism $\operatorname{PGL}_2(\mathbb{F}_5) \to S_6$. Count the number of (2, 2, 2)-cycles in S_6 that are not in the image of this homomorphism, then let $\operatorname{PGL}_2(\mathbb{F}_5)$ act on them by conjugation to give a new permutation representation.
- 4. Some linear algebra over the field of order 9.
 - (a) Prove that $\mathbb{F}_3[i] = \{0, \pm 1, \pm i, \pm 1 \pm i\}$, where $i^2 = -1$ and all other arithmetic is done modulo 3, is a field of order 9, which we call \mathbb{F}_9 .
 - (b) Prove that $PGL_2(\mathbb{F}_9)$ is *not* isomorphic to S_6 , even though they have the same order. Hint: Use some linear algebra to bound the size of the conjugacy classes in $PGL_2(\mathbb{F}_9)$ and compare with what we'll learn about S_6 .
 - (c) Prove, on the other hand, that $PSL_2(\mathbb{F}_9) \cong A_6$. Hint: Find a subgroup of $PSL_2(\mathbb{F}_9)$ isomorphic to A_5 , and then act on the 6 cosets to get a permutation representation.