Yale University Department of Mathematics

Math 350 Introduction to Abstract Algebra

Fall 2017
Final Exam Review Sheet Solutions
3. There is an injective homomorphism $S_{n} \rightarrow A_{2 n}$ sending each σ permutation of $\{1, \ldots, n\}$ to the product $\sigma \sigma^{\prime}$, where σ^{\prime} is the same permutation as σ, except it acts on $\{n+1, \ldots, 2 n\}$. The product of two disjoint permutations of the same length is always even. Checking that this defines an injective homomorphism is straightforward (since σ and σ^{\prime} commute). Then, given any group G of order n, the left regular representation yields an injective homomorphism $G \rightarrow S_{n}$, which we can then compose with $S_{n} \rightarrow A_{2 n}$.
4. Using Euler's theorem, $13^{35} \equiv 13^{5} \bmod 31$ since $35 \equiv 5 \bmod 30$, and $\varphi(31)=30$. Now $13^{2}=169 \equiv 14 \bmod 31$ and $14^{2}=196 \equiv 10 \bmod 31$, so $13^{5}=\left(\left(13^{2}\right)^{2}\right) \cdot 13 \equiv(14)^{2} \cdot 13 \equiv$ $10 \cdot 13 \equiv 6 \bmod 31$, hence $13^{35}-7+5^{3} \equiv 6-7+1 \equiv 0 \bmod 31$, and thus $13^{35}-7+5^{3}$ is divisible by 31 .
5. By the classification theorem for finite abelian groups, the number of isomorphism classes only depends on the number of times a given prime number divides the order. So there are three cases to consider.

Case $1, p=q=r$. Then we are considering groups of order p^{6}. Elementary divisors are in bijection with partitions of 6 . There are eleven of them: $(6),(5,1),(4,2),(4,1,1),(3,3)$, $(3,2,1),(3,1,1,1),(2,2,2),(2,2,1,1),(2,1,1,1,1),(1,1,1,1,1,1)$. So there are 11 isomorphism classes of abelian group of order p^{6}.

Case $2, p=r, q \neq p$. Then we are considering groups of order $p^{4} q^{2}$. Elementary divisors for the p-part are in bijection with partitions of 4 , of which there are five: $(4),(3,1),(2,2),(2,1,1)$, $(1,1,1,1)$. Elementary divisors for the q-part are in bijection with partitions of 2 , of which there are two: (2), (1,1). So there are $10=5 \cdot 2$ isomorphism classes of abelian group of order $p^{4} q^{2}$.

Case 3, p, q, r different. Then we are considering groups of order $p^{2} q^{2} r^{2}$. There are $8=2 \cdot 2 \cdot 2$ isomorphism classes of abelian group of order $p^{2} q^{2} r^{2}$.
6. Let G be a group of order $245=5 \cdot 7^{2}$. Let F be a Sylow 5 -subgroup and S be a Sylow 7 -subgroup. As $n_{5} \equiv 1(\bmod 5)$ and $n_{5} \mid 7^{2}$, we see that $n_{5}=1$, and thus $F \leqslant G$. Also $S \leqslant G$ since its index is the smallest prime dividing the order of G. By Lagrange's theorem, $F \subset S=\{1\}$, since they have relatively prime orders. Hence by the recognition theorem for direct products, $G \cong F \times S$. Now $F \cong Z_{5}$, since its order is prime. We previously proved in class that a group of order p^{2} is abelian, hence S is either isomorphic to Z_{49} or $Z_{7} \times Z_{7}$. In conclusion, there are two possible isomorphism classes of groups of order 245: $Z_{245} \cong Z_{5} \times Z_{49}$ or $Z_{35} \times Z_{7} \cong Z_{5} \times Z_{7} \times Z_{7}$.
7. By Cauchy's theorem, G has an element of order 7, which generates a subgroup $K \subset G$ of order 7. By Lagrange's theorem, $K \cap H=\{1\}$, since their orders are relatively prime. Hence by the recognition theorem for semi-direct products, $G \cong H \rtimes K$ with respect to a homomorphism $\varphi: K \rightarrow \operatorname{Aut}(H)$. As we learned in one of the problem sets, the automorphism group of S_{6} has order $2 \cdot 6$!, with the subgroup of inner automorphisms isomorphic to S_{6}. By Lagrange's
theorem, $\operatorname{Aut}(H)$ has no element of order 7, hence φ is the trivial homomorphism. We conclude that $G \cong H \times K \cong S_{6} \times Z_{7}$.

We know that the abelianization of S_{7} is isomorphic to Z_{2}. Since abelianization commutes with direct products, the abelianization of $S_{6} \times Z_{7}$ is isomorphic to $Z_{2} \times Z_{7}$, hence S_{7} is not isomorphic to $S_{6} \times Z_{7}$, and hence cannot contain any normal subgroup isomorphic to S_{6}.
8. By the problem sets, if $f(x) \in \mathbb{F}_{p}[x]$ is an irreducible polynomial of degree r, then $\mathbb{F}_{p}[x] /(f(x))$ is a field of order p^{r}. Hence we must find irreducible polynomials of degree 3 over $\mathbb{F}_{2}, \mathbb{F}_{3}$, and \mathbb{F}_{5}. By the book, we know that a polynomial of degree 3 is irreducible over a field if and only if it has no roots in that field (remember that this is false for polynomials of degree 4 and higher). It's easy to check (by plugging in the elements) that the polynomial $x^{3}+x+1$ is irreducible over \mathbb{F}_{2} and \mathbb{F}_{5} while the polynomial $x^{3}+x^{2}+x-1$ is irreducible over \mathbb{F}_{3}.

By the problem sets, we know that if $\mathbb{F}_{p^{r}}$ is a field of order p^{r}, then $\mathbb{F}_{p^{r}}^{\times}$is a cyclic group of order $p^{r}-1$. In particular, by the structure theory of subgroups of cyclic groups, for every divisor of $p^{r}-1$ there is an element of that order. So \mathbb{F}_{8}^{\times}has elements of order 1 and $7 ; \mathbb{F}_{27}^{\times}$has elements of order $1,2,13$, and 26 ; and $\mathbb{F}_{125}^{\times}$has elements of order $1,2,4,31,62$, and 124 .
9. To prove that R is a subring, we need to verify that it is closed under addition, which is obvious, and under multiplication:

$$
\left(\begin{array}{ll}
a & b \\
b & a
\end{array}\right)\left(\begin{array}{ll}
c & d \\
d & c
\end{array}\right)=\left(\begin{array}{ll}
a c+b d & a d+b c \\
b c+a d & b d+a c
\end{array}\right)
$$

In fact, R also contains the identity of $M_{2}(\mathbb{R})$, and the commutativity is apparent from the formula for the product. We can see from the product:

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

that R is not an integral domain. Calculating the square of an element:

$$
\left(\begin{array}{ll}
a & b \\
b & a
\end{array}\right)^{2}=\left(\begin{array}{cc}
a^{2}+b^{2} & 2 a b \\
2 a b & a^{2}+b^{2}
\end{array}\right)
$$

we see that to find an idempotent, we must simultaneously solve the equations $a^{2}+b^{2}=a$ and $2 a b=b$ in \mathbb{R}. If $b=0$, then the second is solved, and the first yields $a=0$ of 1 . If $b \neq 0$, then (since \mathbb{R} is a field) we can cancel b from the second equation to get $a=1 / 2$, from which the first equation yields $b= \pm 1 / 2$. Hence the idempotents are:

$$
\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right), \quad\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad\left(\begin{array}{ll}
1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right), \quad\left(\begin{array}{cc}
1 / 2 & -1 / 2 \\
-1 / 2 & 1 / 2
\end{array}\right)
$$

To study nilpotent elements, we need to compute powers, and it is most natural to consider eigenvalues. The characteristic polynomial of an element of R is $x^{2}-2 a x+a^{2}-b^{2}=(x-(a-$ $b))(x-(a+b))$. So the eigenvalues are $a \pm b$. Any nilpotent matrix must have all its eigenvalues nilpotent (indeed, if λ is an eigenvalue of A then λ^{k} is an eigenvalue to A^{k}, and the zero matrix has all zero eigenvalues), and since we are over a field, all eigenvalues must zero. However, the only way for both $a \pm b=0$, is that $a=b=0$, so there are no nonzero nilpotent elements.

Now we consider the map $\varphi: R \rightarrow \mathbb{R}$. It is clearly additive; to check that it is multiplicative, we use the above formula for the product, verifying that $(a-b)(c-d)=(a c+b d)-(a d+b c)$. It also preserves identities, so φ is a homomorphism of rings with 1 . The kernel consists of all
matrices of the form:

$$
\left(\begin{array}{ll}
a & a \\
a & a
\end{array}\right)
$$

The map $\operatorname{ker}(\varphi) \rightarrow \mathbb{R}$ taking such a matrix to a is clearly a group homomorphism between additive groups (it is not a ring homomorphism, however). Considering scalar multiples of the identity, we see that φ is surjective, hence by the first isomorphism theorem, $R / \operatorname{ker}(\varphi) \cong \mathbb{R}$. In particular, $\operatorname{ker}(\varphi)$ is a maximal ideal, hence by a theorem from class (since we are in a commutative ring), is also a prime ideal.
10. As R is a subring of the \mathbb{Q}-quaternions, which is a division ring, we know that a quaternion $x=a+b i+c j+d k$ is invertible if and only if $N(x)=x \bar{x}=a^{2}+b^{2}+c^{2}+d^{2}$ is a unit in \mathbb{Z}, and then the inverse is $\bar{x} / N(x)$. Since $\mathbb{Z}^{\times}=\{ \pm 1\}$, we are left to solve $a^{2}+b^{2}+c^{2}+d^{2}= \pm 1$. Since a sum of squares can only be positive, only $a^{2}+b^{2}+c^{2}+d^{2}=1$ is possible, and then the only solutions are (a, b, c, d) of the form $(\pm 1,0,0,0),(0, \pm 1,0,0),(0,0, \pm 1,0)$, or $(0,0,0, \pm 1)$. Hence $R^{\times}=\{ \pm 1, \pm i, \pm j, \pm k\}$ is isomorphic to the quaternion group of order 8 .
11. By a problem set exercise, a unit in $R[x]$ must have unit constant term and all other coefficients nilpotent. In $\mathbb{Z} / 4 \mathbb{Z}$, the only nonzero nilpotent is 2 . Hence for each $n \geq 0$, the element $1+2 x^{n} \in \mathbb{Z} / 4 \mathbb{Z}[x]$ will be a unit (in fact, it's its own inverse).
12. Since $\mathbb{Z} / 36 \mathbb{Z}$ is a cyclic group, any group homomorphism is determined by where it sends 1 , and the image of 1 must be an element of order dividing 36 . Since $\operatorname{gcd}(36,48)=12$, a homomorphism $\varphi: \mathbb{Z} / 36 \mathbb{Z} \rightarrow \mathbb{Z} / 48 \mathbb{Z}$ must send 1 to an element of order dividing 12 , which consists of the subgroup of $\mathbb{Z} / 48 \mathbb{Z}$ generated by $48 / 12=4$. It is straightforward to check that if $G=\langle g\rangle$ is a cyclic group and H is any abelian groups and $\varphi_{1}, \varphi_{2} \in \operatorname{Hom}(G, H)$ satisfy $\varphi_{i}(g)=a_{i} \in H$, then the element $\varphi_{1}+\varphi_{2} \in \operatorname{Hom}(G, H)$ satisfies $\left(\varphi_{1}+\varphi_{2}\right)(g)=a_{1}+a_{2}$, and thus we have that $\operatorname{Hom}(G, H)$ is isomorphic to the subgroup $\left\{\varphi(g) \mid \varphi \in \operatorname{Hom}_{Z}(G, H)\right\} \subset H$. Hence $\operatorname{Hom}(\mathbb{Z} / 36 \mathbb{Z}, \mathbb{Z} / 48 \mathbb{Z})$ is isomorphic to the subgroup of $\mathbb{Z} / 48 \mathbb{Z}$ generated by 4 , which is a cyclic group of order 12 .

Similarly, as additive groups, $\operatorname{Hom}(\mathbb{Z} / 36 \mathbb{Z}, \mathbb{Z} / 36 \mathbb{Z})$ and $\operatorname{Hom}(\mathbb{Z} / 48 \mathbb{Z}, \mathbb{Z} / 48 \mathbb{Z})$ are cyclic of order 36 and 48 , respectively. In fact, it is similarly straightforward to prove that if $G=\langle g\rangle$ is a cyclic group then the map $\operatorname{Hom}(G, G) \rightarrow G$ defined by $\varphi \mapsto \varphi(g)$ is multiplicative. In conclusion, this defines a ring isomorphism $\operatorname{Hom}(G, G) \cong G$ for any cyclic group G.
13. - We discussed how Gauss proved that $\mathbb{Z}[i]$ is a Euclidean domain for the standard norm. This is not isomorphic to either \mathbb{Z} (since it has an element of multiplicative order 4) nor to $F[x]$ for any field F (any such F would have to have characteristic zero, which is impossible, since for example $2=1+1 \in \mathbb{Z}[i]$ is not invertible but it would be in $F[x]$).

- A Euclidean domain is a PID, as proved in class, so the above example works.
- Technically speaking, a Euclidean domain must be an integral domain, so there are plenty of quotients of \mathbb{Z} (e.g., $\mathbb{Z} / 4 \mathbb{Z}$) or $F[x]$ (e.g., $F[x] /\left(x^{2}\right)$) that are not integral domains. If we ask whether any quotient of \mathbb{Z} or $F[x]$, which is an integral domain, is Euclidean, then the answer is "yes." Indeed, any quotient of \mathbb{Z} is either \mathbb{Z} itself or is $\mathbb{Z} / n \mathbb{Z}$, which is a domain only when it is a field (remember that finite integral domains are fields). Similarly, any quotient of $F[x]$ is either $F[x]$ itself, or is $F[x] /(f(x))$, which, is a domain if and only if $f(x)$ is irreducible if and only if $F[x] /(f(x))$ is a field. Recall that a field is always Euclidean, with respect to the zero norm.
- As above, technically speaking, a PID must be an integral domain, so there are plenty of quotients of \mathbb{Z} of $F[x]$ that are not integral domains. If a particular quotient is an integral domain, then by the lattice isomorphism theorem, it is a PID.
- In class, it was stated that there are only finitely many imaginary quadratic integer rings that are Euclidean, but many more that are PID. For example, $\mathbb{Z}[(1+\sqrt{-19}) / 2]$ is one.
- As mentioned in class, $F[x, y]$ is a UFD but not a PID.
- Impossible, any Euclidean domain is a PID.

