YALE UNIVERSITY DEPARTMENT OF MATHEMATICS Math 350 Introduction to Abstract Algebra Fall 2017

Problem Set # 1 (due at the beginning of class on Friday 15 September)

Notation: Given positive integers a_1, \ldots, a_n we define their least common multiple $lcm(a_1, \ldots, a_n)$ to be least positive integer that is divisible by each of a_1, \ldots, a_n . The following characterization of the lcm is useful:

If $N \ge 1$ is a multiple of a_i for all i = 1, ..., n then $lcm(a_1, ..., a_n)$ divides N.

By the way, to show that two positive integers n and m are equal, it suffices to show that n divides m and that m divides n.

Reading: DF 1.1–1.5.

Problems: (Only DF *ed problems non-DF problems will be graded, but you should solve them all.)

1. Let G be a group and $a_1, a_2, \ldots, a_r \in G$. We say that a_1, \ldots, a_r pairwise commute if a_i commutes with a_j for all i and j. We say that a_1, \ldots, a_r are rank independent if $a_1^{e_1} \cdots a_r^{e_r} = 1$ implies that e_i is a multiple of $|a_i|$ for all i. The aim of the problem is to prove:

Proposition. Let G be a group and $a_1, a_2, \ldots, a_r \in G$ be pairwise commuting rank independent elements of finite order. Then $|a_1 \cdots a_r| = \operatorname{lcm}(|a_1|, \ldots, |a_r|)$.

- (a) (DF 1.1 Exercise 24) If a and b are commuting elements, prove that $(ab)^n = a^n b^n$ for all $n \in \mathbb{Z}$. Hint: Do induction on n.
- (b) If a_1, \ldots, a_r are pairwise commuting elements, prove that $(a_1 \cdots a_r)^n = a_1^n \cdots a_r^n$. Hint: Do induction on r.
- (c) If a_1, \ldots, a_r are pairwise commuting elements of finite order (not necessarily rank independent), prove that $|a_1 \cdots a_r|$ divides $lcm(|a_1|, \ldots, |a_r|)$. Hint: Raise $a_1 \cdots a_r$ to the power $lcm(|a_1|, \ldots, |a_r|)$.
- (d) Prove the proposition. Hint: Do induction on r; for the base case r = 1 there is not much to say, and then you should realize that (after a bit of juggling with least common multipliers) the induction step just boils down to the case r = 2. Hint (for a different proof): Use the above characterization of the lcm to prove that $lcm(|a_1|, \ldots, |a_n|)$ divides $|a_1 \cdots a_n|$. In any method you choose, be sure to highlight where the rank independence condition is used!
- (e) Show that disjoint cycles in S_n are rank independent, then deduce DF 1.3 Exercise 15.

2. DF 1.2 Exercises 2, 3*, 7*.

DF 1.3 Exercises 1 (also compute the order of each permutation), 10^* ("least positive residue mod m" means a number between 1 and m, not between 0 and m - 1 as we are used to taking residues), 11^* , 13^* .

DF 1.4 Exercises $2, 4^*, 5, 11abde^*$.

DF 1.5 Exercises 1, 2.

3. Let $d \in \mathbb{Z}$ be a nonsquare. Prove that $\mathbb{Q}(\sqrt{d}) = \{a + b\sqrt{d} \in \mathbb{C} \mid a, b \in \mathbb{Q}\}$ is a field under addition and multiplication of complex numbers. **Hint.** You can take it for granted that \sqrt{d} is irrational.

YALE UNIVERSITY, DEPARTMENT OF MATHEMATICS, 10 HILLHOUSE AVE, NEW HAVEN, CT 06511 E-mail address: asher.auel@yale.edu