Yale University Department of Mathematics

Math 350 Introduction to Abstract Algebra

Fall 2017
Thanksgiving Problem Set \# 10 (due at the beginning of class on Friday 1 December)
Notation: A ring homomorphism between rings S and R is a map $\varphi: S \rightarrow R$ preserving the operations $\varphi(x+y)=\varphi(x)+\varphi(y)$ and $\varphi(x y)=\varphi(x) \varphi(y)$. A ring isomorphism is a bijective ring homomorphism. The kernel of a ring homomorphism is the set of element sent to 0 .

Let F be a field. An F-algebra A is an F-vector space that is also a ring, with compatibility between multiplication and scalar multiplication $(a x)(b y)=(a b)(x y)$ for $a, b \in F$ and $x, y \in A$. An F-algebra A is unital if A has 1 , and a unital F-algebra homomorphism $\varphi: A \rightarrow B$ is required to satisfy $\varphi\left(1_{A}\right)=1_{B}$. An F-subalgebra of A is an F-subspace that is an algebra under the multiplication in A. To check that a subspace is a subalgebra, it suffices to show that it is closed under multiplication.

Reading: DF 7.2-7.3.

Problems:

1. DF 7.2 Exercises 2, 7, 12 (Hint. Show that $g N=N g$ for all $g \in G$ thought of as elements in the group ring $R[G]$. Why is this enough?), 13* (Hint: See Exercise 12.).
2. DF 7.3 Exercises 1, 10, 14, 15, 17*, 20, 21* (in particular, if F is a field, find all two-sided ideals of $\left.M_{n}(F)\right), 24,26^{*}, 28,29^{*}, 31,33,34$.
3. Imaginary quadratic units. Prove that if $D<0$, then the group \mathcal{O}_{D}^{\times}is finite and find all possibilities for this group. Hint. Think about the topology of the subset $\mathcal{O}_{D} \subset \mathbb{C}$.
4. Quaternions. Let F be a field and \mathbb{H}_{F} be the ring of F-quaternions, whose elements are

$$
a+b x+c y+d z, \quad a, b, c, d \in F
$$

and where addition and multiplication is defined to be the associative and distributive operations with the relations $x^{2}=y^{2}=z^{2}=-1$ and $x y=z=-y x, z x=y=-x z, y z=x=-z y$. Note that these are the same relations as in the usual (real) quaternions, though the reason why we aren't using i, j, and k will be quickly apparent. As before, \mathbb{H}_{F} is a unital F-algebra.
(a) Define the 2×2 complex Pauli matrices

$$
\sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

These play a role in quantum mechanics. Prove that the \mathbb{R}-subspace A of $M_{2}(\mathbb{C})$ spanned by $I, i \sigma_{x}, i \sigma_{y}, i \sigma_{z}$ is a unital \mathbb{R}-algebra isomorphic to $\mathbb{H}_{\mathbb{R}}$. Hint. Realize that $M_{2}(\mathbb{C})$ is an \mathbb{R}-algebra under matrix multiplication, and show that A is an \mathbb{R}-subalgebra, so that you only need to check that A is closed under matrix multiplication.
(b) Prove $\mathbb{H}_{\mathbb{C}}$ is isomorphic, as unital \mathbb{C}-algebras, to $M_{2}(\mathbb{C})$.
(c) For every odd prime p, prove that $\mathbb{H}_{\mathbb{F}_{p}}$ is isomorphic, as unital \mathbb{F}_{p}-algebras, to $M_{2}\left(\mathbb{F}_{p}\right)$.

Hint. The idea is to find replacements for the Pauli matrices. First, if -1 is a square in \mathbb{F}_{p}^{\times}, then you can literally use the Pauli matrices, replacing i by a square root of -1 . Prove that for p odd, -1 is a square in \mathbb{F}_{p}^{\times}if and only if $p \equiv 1(\bmod 4)$. To do this, recall the (as of yet unproved) fact that \mathbb{F}_{p}^{\times}is a cyclic group of order $p-1$, which is even since p is odd. Then the squares will form a subgroup of index 2 in \mathbb{F}_{p}^{\times}and in fact any element of order 4 in \mathbb{F}_{p}^{\times}will be a square root of -1 . But \mathbb{F}_{p}^{\times}has an element of order 4 if and only if $p-1$ is divisible by 4 . So what about the case $p \equiv 3(\bmod 4)$? Here, you need to come up with different matrices whose square is $-I$, which by linear algebra, must have trace 0 and determinant 1 . The following fact will be useful: when p is odd, there are $(p+1) / 2$ squares in \mathbb{F}_{p} (this following immediately from the preceding discussion, together with the fact that 0 is a square).
(d) Prove that $\mathbb{H}_{\mathbb{F}_{2}}$ is isomorphic to the group ring $\mathbb{F}_{2}[G]$, where G is a Klein-four group.

