YALE UNIVERSITY DEPARTMENT OF MATHEMATICS Math 350 Introduction to Abstract Algebra Fall 2017

Thanksgiving Problem Set # 10 (due at the beginning of class on Friday 1 December)

Notation: A ring homomorphism between rings S and R is a map $\varphi : S \to R$ preserving the operations $\varphi(x+y) = \varphi(x) + \varphi(y)$ and $\varphi(xy) = \varphi(x)\varphi(y)$. A ring isomorphism is a bijective ring homomorphism. The **kernel** of a ring homomorphism is the set of element sent to 0.

Let F be a field. An F-algebra A is an F-vector space that is also a ring, with compatibility between multiplication and scalar multiplication (ax)(by) = (ab)(xy) for $a, b \in F$ and $x, y \in A$. An F-algebra A is **unital** if A has 1, and a unital F-algebra homomorphism $\varphi : A \to B$ is required to satisfy $\varphi(1_A) = 1_B$. An F-subalgebra of A is an F-subspace that is an algebra under the multiplication in A. To check that a subspace is a subalgebra, it suffices to show that it is closed under multiplication.

Reading: DF 7.2–7.3.

Problems:

1. DF 7.2 Exercises 2, 7, 12 (Hint. Show that gN = Ng for all $g \in G$ thought of as elements in the group ring R[G]. Why is this enough?), 13^{*} (Hint: See Exercise 12.).

2. DF 7.3 Exercises 1, 10, 14, 15, 17^{*}, 20, 21^{*} (in particular, if F is a field, find all two-sided ideals of $M_n(F)$), 24, 26^{*}, 28, 29^{*}, 31, 33, 34.

3. Imaginary quadratic units. Prove that if D < 0, then the group \mathcal{O}_D^{\times} is finite and find all possibilities for this group. Hint. Think about the topology of the subset $\mathcal{O}_D \subset \mathbb{C}$.

4. Quaternions. Let F be a field and \mathbb{H}_F be the ring of F-quaternions, whose elements are

$$a + bx + cy + dz, \qquad a, b, c, d \in F$$

and where addition and multiplication is defined to be the associative and distributive operations with the relations $x^2 = y^2 = z^2 = -1$ and xy = z = -yx, zx = y = -xz, yz = x = -zy. Note that these are the same relations as in the usual (real) quaternions, though the reason why we aren't using *i*, *j*, and *k* will be quickly apparent. As before, \mathbb{H}_F is a unital *F*-algebra.

(a) Define the 2×2 complex **Pauli matrices**

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

These play a role in quantum mechanics. Prove that the \mathbb{R} -subspace A of $M_2(\mathbb{C})$ spanned by $I, i\sigma_x, i\sigma_y, i\sigma_z$ is a unital \mathbb{R} -algebra isomorphic to $\mathbb{H}_{\mathbb{R}}$. **Hint.** Realize that $M_2(\mathbb{C})$ is an \mathbb{R} -algebra under matrix multiplication, and show that A is an \mathbb{R} -subalgebra, so that you only need to check that A is closed under matrix multiplication.

- (b) Prove $\mathbb{H}_{\mathbb{C}}$ is isomorphic, as unital \mathbb{C} -algebras, to $M_2(\mathbb{C})$.
- (c) For every odd prime p, prove that $\mathbb{H}_{\mathbb{F}_p}$ is isomorphic, as unital \mathbb{F}_p -algebras, to $M_2(\mathbb{F}_p)$. **Hint.** The idea is to find replacements for the Pauli matrices. First, if -1 is a square in \mathbb{F}_p^{\times} , then you can literally use the Pauli matrices, replacing i by a square root of -1. Prove that for p odd, -1 is a square in \mathbb{F}_p^{\times} if and only if $p \equiv 1 \pmod{4}$. To do this, recall the (as of yet unproved) fact that \mathbb{F}_p^{\times} is a cyclic group of order p-1, which is even since p is odd. Then the squares will form a subgroup of index 2 in \mathbb{F}_p^{\times} and in fact any element of order 4 in \mathbb{F}_p^{\times} will be a square root of -1. But \mathbb{F}_p^{\times} has an element of order 4 if and only if p-1 is divisible by 4. So what about the case $p \equiv 3 \pmod{4}$? Here, you need to come up with different matrices whose square is -I, which by linear algebra, must have trace 0 and determinant 1. The following fact will be useful: when p is odd, there are (p+1)/2 squares in \mathbb{F}_p (this following immediately from the preceding discussion, together with the fact that 0 is a square).
- (d) Prove that $\mathbb{H}_{\mathbb{F}_2}$ is isomorphic to the group ring $\mathbb{F}_2[G]$, where G is a Klein-four group.