Yale University Department of Mathematics

Math 350 Introduction to Abstract Algebra

Fall 2017
Extra Credit Problem Set \# 11 (due on Wednesday 13 December)
Reading: DF 7.4-7.6, 8.1-8.3, 9.1-9.2.

Problems:

1. DF 7.4 Exercises 37,38 .
2. DF 7.5 Exercises 3,5 .
3. DF 8.1 Exercises $3,6,8,12$.
4. DF 8.2 Exercises 3, 5.

5. DF 8.3 Exercise 8.

6. DF 9.1 Exercises 13 (Hint. For any commutative ring R with 1 and any $g \in R$, prove that $R[x] /(x-g) \cong R$, then use this to prove that $y^{2}-x$ is prime in $\left.F[x, y]\right)$.
7. DF 9.2 Exercises 2,3 (this provides a way to build more finite fields).
8. Finite field with p^{2} elements. Before, we constructed $\mathbb{F}_{4}=\mathbb{F}_{2}[x] /\left(x^{2}+x+1\right)$. In an analogous way, construct $\mathbb{F}_{9}, \mathbb{F}_{25}$, and \mathbb{F}_{49}.
9. Subgroups of fields. Let F be a field.
(a) Prove that any nonzero polynomial of degree n with coefficients in F has at most n roots in F. Hint. Induction on the degree of the polynomial.
(b) Prove that every finite subgroup of the multiplicative group $F^{\times}=F \backslash\{0\}$ is cyclic. Hint. Fix a prime p dividing the order n of the subgroup, let q be the highest power of p dividing n. Consider the map $F^{\times} \rightarrow F^{\times}$defined by raising to the n / q power. By considering the orders of the kernel and image of this map, conclude that there is an element of this subgroup of order q (at some point, you'll need the previous part). Do this for each prime dividing n and then find a generator for the group.
(c) Prove that if F is a finite field then F^{\times}is cyclic. For each field F having at most 7 elements, find an explicit generator of F^{\times}.
10. Call a positive integer n special if there exists an integer m with $1<m<n$ so that

$$
1+2+\cdots+(m-1)=(m+1)+\cdots+n
$$

For example, $n=8$ is special with $m=6$, while $n=7$ is not special. Find all positive integers that are special.
11. RSA Public Key Yale Example, cf. DF 8.1 Exercise 12. You intercept a message from President Salovey to the Yale Corporation encrypted using the public key $N=3610003458000828019$ and $d=3123534573$. The encrypted message is $M_{1}=2651355372442353120$. Decrypt the message and try various ciphers to figure out what Salovey is trying to tell them. Hint. You might enjoy learning about the Extended Euclidean algorithm.

