Yale University Department of Mathematics

Math 350 Introduction to Abstract Algebra

Fall 2017
Problem Set \# 3 (due at the beginning of class on Friday 29 September)

Notation: Given a subset A of a group G, the subgroup generated by A is the subset $\langle A\rangle$ in G of all products of powers of elements in A, which is actually a subgroup of G. The main result of DF 2.4 is that $\langle A\rangle$ coincides with the intersection of all subgroups of G that contain A, in other words, $\langle A\rangle$ is the "smallest" subgroup of G containing A.

Reading: DF 2.2-2.5.

Problems:

1. DF 2.2 Exercises $6,7^{*}, 12,14$.
2. DF 2.4 Exercises $6,7,8,9^{*}, 11^{*}$ (Hint: What are the orders of elements in S_{4} ?) , 13, 12*, $14^{*}, 15,19$.
3. DF 2.5 Exercises $4,10,12^{*}, 14^{*}, 15$.
4. DF 3.2 (You do not need to read DF 3.2 in order to do these exercises, just Lagrange's Theorem.) Exercises $8^{*}, ~ 9,13^{*}, 16^{*}, 22^{*}$ (Euler's theorem!).
5. Show that for all $n, m \geq 1$, the group S_{n+m} contains a subgroup isomorphic to $S_{n} \times S_{m}$. Conclude that $n!m$! divides $(n+m)$!.
6. Let H be the subgroup of S_{4} generated by the 3 -cycles. Show that there exists a positive integer n, with n dividing the order of H, and such that H has no subgroup of order n.
7. Tricks with Euler's theorem. You can only use pencil and paper!
(a) Find the remainder after dividing 99^{999999} by 29 .
(b) Prove that every element of $(\mathbb{Z} / 72 \mathbb{Z})^{\times}$has order dividing 12. (Hint: This is better than what a straight application of Euler's theorem will give you! Try applying Euler's theorem to a pair of relatively prime divisors of 72.)
(c) Find the last two digits of the huge number $3^{3^{3}} \quad$ where there are 2017 threes appearing! (Hint: Do nested applications of Euler's theorem.)
[^0]
[^0]: Yale University, Department of Mathematics, 10 Hillhouse Ave, New Haven, CT 06511
 E-mail address: asher.auel@yale.edu

