YALE UNIVERSITY DEPARTMENT OF MATHEMATICS Math 350 Introduction to Abstract Algebra Fall 2017

Problem Set # 4 (due at the beginning of class on Friday 6 October)

Reading: DF 3.1, 3.3, 3.5.

Problems:

1. DF 3.1 Exercises 5–12, 14*, 17*, 22, 25, 32, 34, 36*, 40, 41*, 42.

2. DF 3.2 Exercises 4^{*}, 5, 14^{*}, 19, 21^{*} (Hint: try dividing by an integer relatively prime to the index of this purported subgroup).

3. More classification. Prove that if G is an abelian group of order pq, where p an q are distinct primes numbers, then G is cyclic. You can use Cauchy's theorem for abelian groups.

- 4. Some isomorphisms.
 - (a) For any field F, prove that the center of $\operatorname{GL}_2(F)$ consists of F^{\times} multiples of the identity matrix. What is the center of $\operatorname{SL}_2(F)$? We denote by $\operatorname{PGL}_2(F) = \operatorname{GL}_2(F)/Z(\operatorname{GL}_2(F))$ and $\operatorname{PSL}_2(F) = \operatorname{SL}_2(F)/Z(\operatorname{SL}_2(F))$.
 - (b) Prove that $\operatorname{GL}_2(F)$ acts on the set P of lines in F^2 through the origin and that the kernel of this action is the center of $\operatorname{GL}_2(F)$. Here, "line through the origin" is a colloquial term for "1-dimensional subspace." Conclude that $\operatorname{PGL}_2(F)$ acts faithfully on the set P, hence the permutation representation is an injective homomorphism $\operatorname{PGL}_2(F) \to S_P$ to the symmetric group on the elements of P.
 - (c) Calculate $|PGL_2(\mathbb{F}_p)|$.
 - (d) Prove that $PGL_2(\mathbb{F}_3) \cong S_4$. (Hint: How many lines through the origin are there in \mathbb{F}_3^2 ?)
 - (e) Under the isomorphism $PGL_2(\mathbb{F}_3) \cong S_4$ from the previous part, find all elements of $PGL_2(\mathbb{F}_3)$ corresponding to 3-cycles.
 - (f) For an odd prime p, prove that the map $PSL_2(\mathbb{F}_p) \to PGL_2(\mathbb{F}_p)$, taking the coset represented by a matrix M to the coset represented by M, is a well defined injective homomorphism whose image has index 2. Notice that for p = 3 this is particularly clear!
 - (g) Prove that the determinant yields a well-defined homomorphism det : $PGL_2(\mathbb{F}_3) \to \mathbb{F}_3^{\times}$. Show that $PSL_2(\mathbb{F}_3) = \ker(\det)$.
 - (h) Show that $PSL_2(\mathbb{F}_3)$ is isomorphic to the subgroup of S_4 generated by the 3-cycles.